2 矩形的判定 同步练习 目标与方法 查看更多

 

题目列表(包括答案和解析)

数学学习总是如数学知识自身的生长历史一样,往往起源于猜测中的发现,我们所发现的不一定对,但是当利用我们已有的知识作为推理的前提论证之后,当所发现的在逻辑上没有矛盾之后,就可以作为新的推理的前提,数学中称之为定理.
(1)尝试证明:
等腰三角形的探索中借助折纸发现:直角三角形斜边上的中线等于斜边的一半.但是当时并未说明这个结论的合理.现在我们学些了矩形的判定和性质之后,就可以解决这个问题了.如图1若在Rt△ABC中CD是斜边AB的中线,则CD=
12
AB
,你能用矩形的性质说明这个结论吗?请说明.
(2)迁移运用:利用上述结论解决下列问题:
①如图2所示,四边形ABCD中,∠BAD=90°,∠DCB=90°,EF分别是BD、AC的中点,请你说明EF与AC的位置关系.
②如图3所示,?ABCD中,以AC为斜边作Rt△ACE,∠AEC=90°,且∠BED=90°,试说明平行四边形ABCD是矩形.

查看答案和解析>>

数学学习总是如数学知识自身的生长历史一样,往往起源于猜测中的发现,我们所发现的不一定对,但是当利用我们已有的知识作为推理的前提论证之后,当所发现的在逻辑上没有矛盾之后,就可以作为新的推理的前提,数学中称之为定理.
(1)尝试证明:
等腰三角形的探索中借助折纸发现:直角三角形斜边上的中线等于斜边的一半.但是当时并未说明这个结论的合理.现在我们学些了矩形的判定和性质之后,就可以解决这个问题了.如图1若在Rt△ABC中CD是斜边AB的中线,则数学公式,你能用矩形的性质说明这个结论吗?请说明.
(2)迁移运用:利用上述结论解决下列问题:
①如图2所示,四边形ABCD中,∠BAD=90°,∠DCB=90°,EF分别是BD、AC的中点,请你说明EF与AC的位置关系.
②如图3所示,?ABCD中,以AC为斜边作Rt△ACE,∠AEC=90°,且∠BED=90°,试说明平行四边形ABCD是矩形.

查看答案和解析>>

精英家教网已知P是线段AB的黄金分割点,且PA>PB、如果S1表示以PA为一边的正方形的面积,S2表示长为AB、宽为PB的矩形的面积,则S1与S2之间的大小关系是(  )
A、S1=S2B、S1>S2C、S1<S2D、S1与S2的大小关系不能确定

查看答案和解析>>

6、一般相似三角形的判定方法有哪几种?如何灵活选用?请你填一填,补充完成这份小结.
相似三角形的判定一共有四种方法:
(1)(定义法)对应角相等,对应边
成比例
的两个三角形相似.
(2)两角
对应相等
的两个三角形相似.
(3)两边对应
成比例
且夹角相等的两个三角形相似.
(4)三边对应
成比例
的两个三角形相似.
从这四种方法中我们可以看出,第一种判定方法比较麻烦,一般不利用.如果已知条件只涉及角,就用第
种判定方法;如果已知条件只涉及边,就用第
种判定方法;如果既有角又有边,则可考虑用第
种方法判断.

查看答案和解析>>

.用长度一定的绳子围成一个矩形,如果矩形的一边长x(m)与面积y(m)满足函数关系y=-(x-12)+144(0<x<24),则该矩形面积的最大值为_____________.

 

查看答案和解析>>


同步练习册答案