1.会证明矩形的判定定理. 查看更多

 

题目列表(包括答案和解析)

数学学习总是如数学知识自身的生长历史一样,往往起源于猜测中的发现,我们所发现的不一定对,但是当利用我们已有的知识作为推理的前提论证之后,当所发现的在逻辑上没有矛盾之后,就可以作为新的推理的前提,数学中称之为定理.
(1)尝试证明:
等腰三角形的探索中借助折纸发现:直角三角形斜边上的中线等于斜边的一半.但是当时并未说明这个结论的合理.现在我们学些了矩形的判定和性质之后,就可以解决这个问题了.如图1若在Rt△ABC中CD是斜边AB的中线,则CD=
12
AB
,你能用矩形的性质说明这个结论吗?请说明.
(2)迁移运用:利用上述结论解决下列问题:
①如图2所示,四边形ABCD中,∠BAD=90°,∠DCB=90°,EF分别是BD、AC的中点,请你说明EF与AC的位置关系.
②如图3所示,?ABCD中,以AC为斜边作Rt△ACE,∠AEC=90°,且∠BED=90°,试说明平行四边形ABCD是矩形.

查看答案和解析>>

数学学习总是如数学知识自身的生长历史一样,往往起源于猜测中的发现,我们所发现的不一定对,但是当利用我们已有的知识作为推理的前提论证之后,当所发现的在逻辑上没有矛盾之后,就可以作为新的推理的前提,数学中称之为定理.
(1)尝试证明:
等腰三角形的探索中借助折纸发现:直角三角形斜边上的中线等于斜边的一半.但是当时并未说明这个结论的合理.现在我们学些了矩形的判定和性质之后,就可以解决这个问题了.如图1若在Rt△ABC中CD是斜边AB的中线,则数学公式,你能用矩形的性质说明这个结论吗?请说明.
(2)迁移运用:利用上述结论解决下列问题:
①如图2所示,四边形ABCD中,∠BAD=90°,∠DCB=90°,EF分别是BD、AC的中点,请你说明EF与AC的位置关系.
②如图3所示,?ABCD中,以AC为斜边作Rt△ACE,∠AEC=90°,且∠BED=90°,试说明平行四边形ABCD是矩形.

查看答案和解析>>

5、如图,在?ABCD中,E、F分别是AB、CD上的点且BE=DF,要证明四边形AECF是平行四边形,只需证明
AE=CF
,此时用的判定定理是
一组对边平行且相等的四边形是平行四边形

查看答案和解析>>

7、用两种方法证明等腰梯形判定定理:在同一底上的两个角相等的梯形是等腰梯形(要求:画出图形,写出已知、求证、证明).

查看答案和解析>>

(2012•西城区模拟)我们在几何的学习中能发现,很多图形的性质定理与判定定理之间有着一定的联系.例如:菱形的性质定理“菱形的对角线互相垂直”和菱形的判定定理“对角线互相垂直的平行四边形是菱形”就是这样.但是课本中对菱形的另外一个性质“菱形的对角线平分一组对角”却没有给出类似的判定定理,请你利用如图所示图形研究一下这个问题.
要求:如果有类似的判定定理,请写出已知、求证并证明.如果没有,请举出反例.

查看答案和解析>>


同步练习册答案