2.能运用等腰梯形的性质定理和判定定理进行简单的计算与证明. 基础与巩固 查看更多

 

题目列表(包括答案和解析)

如图,射线PG平分∠EPF,O为射线PG上一点,以O为圆心作⊙O,分别与∠EPF两边相交于A、B和C、D,连接OA,此时有OA∥PE.
(1)求证:AP=AO;
(2)若以图中已标明的点(即P、A、B、C、D、O)构造四边形,那么请你直接写出能构成菱形的四边形和能构成等腰梯形的四边形(注意:不要漏掉呀!).

查看答案和解析>>

(2012•樊城区模拟)如图,O为∠EPF内射线PG上一点,以O为圆心,10为半径作⊙O,分别与∠EPF两边相交于A,B和C,D且AB=CD,连接OA,此时有OA∥PE.
(1)求证:AP=AO;
(2)若弦AB=12,求四边形PAOC的面积;
(3)若以图中已标明的点(即P,A,B,C,D,O)构造四边形,则能构成等腰梯形的四个点为
P、C、O、B或P、A、O、D或A、B、D、C.
P、C、O、B或P、A、O、D或A、B、D、C.

查看答案和解析>>

22、完成以下证明,并在括号内填写理由:
已知:如图所示,在等腰梯形ABCD中,AD∥BC,AB=CD,∠1=∠2.
求证:BE=CE
证明:∵等腰梯形ABCD中,AD∥BC,AB=CD(已知)
∴∠B=∠
C
等腰梯形的性质

在△
ABE
和△
DCE

∠1=∠2
AB=CD
∠B=∠C
∴△
ABE
≌△
DCE
ASA

∴BE=CE(
全等三角形的性质

查看答案和解析>>

如图,射线PG平分∠EPF,O为射线PG上一点,以O为圆心,10为半径作⊙O,分别与精英家教网∠EPF的两边相交于A、B和C、D,连接OA,此时有OA∥PE.
(1)求证:AP=AO;
(2)若tan∠OPB=
12
,求弦AB的长;
(3)若以图中已标明的点(即P、A、B、C、D、O)构造四边形,则能构成菱形的四个点为
 
,能构成等腰梯形的四个点为
 
 
 

查看答案和解析>>

(本题8分)如图,射线PG平分∠EPFO为射线PG上一点,以O为圆心,10为半径作⊙O,分别与∠EPF 的两边相交于ABCD,连结OA,此时有OA//PE

(1)求证:AP=AO

(2)若tan∠OPB=,求弦AB的长;

 

(3)若以图中已标明的点(即PABCDO)构造四边形,则能构成菱形的四个点为  ▲  ,能构成等腰梯形的四个点为  ▲    ▲    ▲  .

 

查看答案和解析>>


同步练习册答案