(一)对直角坐标系的理解[数形结合] [知识要点] 1. 特殊位置的点的坐标特点 各象限内的点, 坐标轴上的点 例1.例2.例3.例4 [点所在区域决定点坐标的正.负.零, 点到轴的距离决定点坐标的绝对值] 公式: 点到 x 轴的距离 = | y | 点到 y 轴的距离 = | x | = 几何 函数 [转化为线段长用几何知识,转化为点的坐标用函数知识] 例25 象限角平分线上的点[利用坐标间的数量关系构造方程] 例5.例7(2) 第1.3象限角平分线上的点( x.y ) x = y 第2.4象限角平分线上的点( x.y ) x = - y 2. 两个具有特殊位置的点的坐标间的数量关系 例6 平行 [利用坐标间的数量关系构造方程] [基本题型.基本方法] 1. 已知点的坐标 ★ 会求点到坐标轴的距离, 会求同一坐标轴上两点间的距离. 会求两坐标轴上两点间的距离, 会求点到原点的距离.会求仅有一点在坐标轴上的两点间的距离 ★ 由已知点的坐标求有关对称点的坐标 例6 ★ 求图形变换后点的坐标.会用点的坐标刻化点的移动. 例10 2. 画点的坐标:(略) 3. 求点的坐标: (1)定域定量法: 例7(1) (2)构造方程法: 例5.例7(2) (3)图象交点法: 1)观察点的坐标: 例16.例28(2).例38等等 2)观察已知点有关对称点的坐标: 例6 3)观察函数图象与坐标轴交点的坐标:例16(1).例38.例39 4)观察两个函数图象交点的坐标: 例32(2) 5)观察点的坐标.求函数解析式: 例28(2) 查看更多

 

题目列表(包括答案和解析)

阅读下面的材料,并回答所提出的问题:如图所示,在锐角三角形ABC中,求证:
这个三角形不是一个直角三角形,不能直接使用锐角三角函数的知识去处理,所以必须构造直角三角形,过点A作AD⊥BC,垂足为D,则在Rt△ABD和Rt△ACD中由正弦定义可完成证明.
解:如图,过点A作AD⊥BC,垂足为D,
在Rt△ABD中,sinB=,则AD=csinB
Rt△ACD中,sinC=,则AD=bsinC
所以c sinB=b sinC,即
(1)在上述分析证明过程中,主要用到了下列三种数学思想方法的哪一种( )
A、数形结合的思想;B、转化的思想;C、分类的思想
(2)用上述思想方法解答下面问题.
在△ABC中,∠C=60°,AC=6,BC=8,求AB和△ABC的面积.
(3)用上述结论解答下面的问题(不必添加辅助线)
在锐角三角形ABC中,AC=10,AB=,∠C=60°,求∠B的度数.

查看答案和解析>>

阅读下面的材料,并回答所提出的问题:如图所示,在锐角三角形ABC中,求证:
这个三角形不是一个直角三角形,不能直接使用锐角三角函数的知识去处理,所以必须构造直角三角形,过点A作AD⊥BC,垂足为D,则在Rt△ABD和Rt△ACD中由正弦定义可完成证明.
解:如图,过点A作AD⊥BC,垂足为D,
在Rt△ABD中,sinB=,则AD=csinB
Rt△ACD中,sinC=,则AD=bsinC
所以c sinB=b sinC,即
(1)在上述分析证明过程中,主要用到了下列三种数学思想方法的哪一种( )
A、数形结合的思想;B、转化的思想;C、分类的思想
(2)用上述思想方法解答下面问题.
在△ABC中,∠C=60°,AC=6,BC=8,求AB和△ABC的面积.
(3)用上述结论解答下面的问题(不必添加辅助线)
在锐角三角形ABC中,AC=10,AB=,∠C=60°,求∠B的度数.

查看答案和解析>>

阅读下面的材料,并回答所提出的问题:如图所示,在锐角三角形ABC中,求证:
这个三角形不是一个直角三角形,不能直接使用锐角三角函数的知识去处理,所以必须构造直角三角形,过点A作AD⊥BC,垂足为D,则在Rt△ABD和Rt△ACD中由正弦定义可完成证明.
解:如图,过点A作AD⊥BC,垂足为D,
在Rt△ABD中,sinB=,则AD=csinB
Rt△ACD中,sinC=,则AD=bsinC
所以c sinB=b sinC,即
(1)在上述分析证明过程中,主要用到了下列三种数学思想方法的哪一种( )
A、数形结合的思想;B、转化的思想;C、分类的思想
(2)用上述思想方法解答下面问题.
在△ABC中,∠C=60°,AC=6,BC=8,求AB和△ABC的面积.
(3)用上述结论解答下面的问题(不必添加辅助线)
在锐角三角形ABC中,AC=10,AB=,∠C=60°,求∠B的度数.

查看答案和解析>>

数形结合作为一种数学思想方法,数形结合的应用大致又可分为两种情形:或者借助于数的精确性来阐明形的某些属性,即“以数解形”;或者借助形的几何直观性来阐明数之间的某种关系,即“以形助数”.
如浙教版九上课本第109页作业题第2题:如图1,已知在△ABC中,∠ACB=90°,CD⊥AB,D为垂足.易证得两个结论:(1)AC•BC=AB•CD   (2)AC2=AD•AB
(1)请你用数形结合的“以数解形”思想来解:如图2,已知在△ABC中(AC>BC),∠ACB=90°,CD⊥AB,D为垂足,CM平分∠ACB,且BC、AC是方程x2-14x+48=0的两个根,求AD、MD的长.
(2)请你用数形结合的“以形助数”思想来解:设a、b、c、d都是正数,满足a:b=c:d,且a最大.求证:a+d>b+c(提示:不访设AB=a,CD=d,AC=b,BC=c,构造图1)
精英家教网

查看答案和解析>>

【改编】(本小题满分10分)
数形结合作为一种数学思想方法,数形结合的应用大致又可分为两种情形:或者借助于数的精确性来阐明形的某些属性,即“以数解形”;或者借助形的几何直观性来阐明数之间的某种关系,即“以形助数”。                                                           如浙教版九上课本第109页作业题第2题:如图1,已知在△ABC中,∠ACB=900,CD⊥AB,D为垂足。易证得两个结论:(1)AC·BC = AB·CD   (2)AC2= AD·AB
(1)请你用数形结合的“以数解形”思想来解:如图2,已知在△ABC中(AC>BC),∠ACB=900,CD⊥AB,D为垂足, CM平分∠ACB,且BC、AC是方程x2-14x+48=0的两个根,求AD、MD的长。
(2)请你用数形结合的“以形助数”思想来解:设a、b、c、d都是正数,满足a:b=c:d,且a最大。求证:a+d>b+c(提示:不访设AB=a,CD=d,AC=b,BC=c,构造图1)

查看答案和解析>>


同步练习册答案