④若.其中为真命题的是 ▲ . 查看更多

 

题目列表(包括答案和解析)

其中为真命题的是

①分别与两条异面直线都相交的两条直线一定是异面直线;
②若一个平面经过另一个平面的垂线,那么这两个平面相互垂直;
③垂直于同一直线的两条直线相互平行;   
④若两个平面垂直,那么一个平面内与它们的交线不垂直的直线与另一个平面也不垂直.

其中为真命题的是


  1. A.
    ①和②
  2. B.
    ②和④
  3. C.
    ③和④
  4. D.
    ②和③

查看答案和解析>>

命题p:m≤t≤n,其中m,n分别是函数
x2+2x  x∈[-2,0)
x          x∈[0,1]
的最小值和最大值,命题q:(t-1)2≥|z1-z2|,其中z1,z2∈C,z1,z2满足条件|z1|=|z2|=
2
,|z1+z2|=2
.若命题“p且q”为真,求实数t的取值范围.

查看答案和解析>>

①命题“对任意的x∈R,x3-x2+1≤0”的否定是“存在x∈R,x3-x2+1>0”;
②函数f(x)=2x-x2的零点有2个;
③若函数f(x)=x2-|x+a|为偶函数,则实数a=0;
④函数y=sinx(x∈[-π,π])图象与x轴围成的图形的面积是S=
x
-x
sinxdx;
⑤若函数f(x)=
ax-5(x>6)
(4-
a
2
)x+4(x≤6)
,在R上是单调递增函数,则实数a的取值范围为(1,8).
其中真命题的序号是
①③
①③
(写出所有正确命题的编号).

查看答案和解析>>

①若“pq”为真命题,则p、q均为真命题(   );
②“若”的否命题为“若,则”;
③“”的否定是“”;
④“”是“”的充要条件. 其中不正确的命题是

A.①② B.②③ C.①③ D.③④

查看答案和解析>>

命题p:实数x满足x2-4ax+3a2<0(其中a>0);命题q:实数x满足
|x-1|≤2
x+3
x-2
≥0.

(Ⅰ)若a=1,且p∧q为真,求实数x的取值范围;
(Ⅱ)若?p是?q的充分不必要条件,求实数a的取值范围.

查看答案和解析>>

 

1

2

3

4

5

6

7

8

2

9

充分不必要

4

①②④

9

10

11

12

13

14

 

或0

点P在圆内

①②③

 

 

15.解: (1)因为各组的频率和等于1,故低于50分的频率为:

所以低于50分的人数为(人)………………………………………….5分

(2)依题意,成绩60及以上的分数所在的第三、四、五、六组(低于50分的为第一组),

频率和为

所以,抽样学生成绩的合格率是%.

于是,可以估计这次考试物理学科及格率约为%……………………………………9分.

(3)“成绩低于50分”及“[50,60)”的人数分别是6,9。所以从成绩不及格的学生中选两人,他们成绩至少有一个不低于50分的概率为:  ……………14分

16.解:(1)

,∴

,∴.………………………………………………………………7分

(2)mn

|mn|

,∴,∴

从而

∴当=1,即时,|mn|取得最小值

所以,|mn|.………………………………………………………………14分

17.(1)证明:E、P分别为AC、A′C的中点,

        EP∥A′A,又A′A平面AA′B,EP平面AA′B

       ∴即EP∥平面A′FB                  …………………………………………7分

(2) 证明:∵BC⊥AC,EF⊥A′E,EF∥BC

   ∴BC⊥A′E,∴BC⊥平面A′EC

     BC平面A′BC

   ∴平面A′BC⊥平面A′EC             …………………………………………14分

注:直角三角形条件在证这两问时多余了,可直接用两侧面的直角三角形证明即可。

18.解:(1)取弦的中点为M,连结OM

由平面几何知识,OM=1

     得:  

∵直线过F、B ,∴     …………………………………………6分

(2)设弦的中点为M,连结OM

       解得     

                    …………………………………………15分

(本题也可以利用特征三角形中的有关数据直接求得)

19.


 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

第(3)问的构造法可直接用第二种方法,作差后用代换即可。

20.解:(1)由方程组的解为不符合题设,可证。………3

(2)假设存在。

由方程组,得,即…5

),可证:当时,单调递减且;当时,单调递减且

,设,则………7

①当时,递增,故

于是上单调递减。

,则上递增,,即,所以………9

②当时,递减,故

于是上单调递减。

上递减,,即,所以

由函数)的性质可知满足题设的不存在。………11

(3)假设1,是一个公差为的等差数列的第r、s、t项,又是一个等比为等比数列的第r、s、t项。于是有:

从而有, 所以

,同(2)可知满足题设的不存在………16

注:证法太繁,在第二问中,可用来表示,消去可得,则构造易得到极值点为

 

 

 

 

 

附加题参考答案

附1.(1)设M=,则有==

所以   解得,所以M=.…………………………5分

(2)任取直线l上一点P(x,y)经矩阵M变换后为点P’(x’,y’).

因为,所以又m:

所以直线l的方程(x+2y)-(3x+4y)=4,即x+y+2=0.………………………………10分

附2.解:以有点为原点,极轴为轴正半轴,建立平面直角坐标系,两坐标系中取相同的长度单位.

(1),由

所以

为圆的直角坐标方程. 

同理为圆的直角坐标方程. ……………………………………6分

(2)由      

相减得过交点的直线的直角坐标方程为. …………………………10分

附3.(1)设P(x,y),根据题意,得

化简,得.………………………………………………………………5分

(2).……………………………………10分

附4.(1)记事件A为“任取两张卡片,将卡片上的函数相加得到的函数是奇函数”,由题意知               ………………………………4分

(2)ξ可取1,2,3,4.  

 ;………………8分

 故ξ的分布列为

ξ

1

2

3

4

P

                                                             

  答:ξ的数学期望为       …………10分

 


同步练习册答案