2.探索并了解垂径定理. 查看更多

 

题目列表(包括答案和解析)

垂径定理及其推论:
定理:垂直于弦的直径
平分弦,并且平分弦所对的两条弧
平分弦,并且平分弦所对的两条弧

推论:
(1)平分弦(不是直径)的直径
垂直于弦,并且平分弦所对的两条弧
垂直于弦,并且平分弦所对的两条弧

(2)弦的垂直垂直平分线经过圆心,并且
平分弦所对的两条弧
平分弦所对的两条弧

(3)平分弦所对的一条弧的直径,垂直平分弦,并且
平分弦所对的另一条弧
平分弦所对的另一条弧

查看答案和解析>>

27、小明学习了垂径定理,做了下面的探究,请根据题目要求帮小明完成探究.
(1)更换定理的题设和结论可以得到许多真命题.如图1,在⊙0中,C是劣弧AB的中点,直线CD⊥AB于点E,则AE=BE.请证明此结论;
(2)从圆上任意一点出发的两条弦所组成的折线,成为该圆的一条折弦.如图2,PA,PB组成⊙0的一条折弦.C是劣弧AB的中点,直线CD⊥PA于点E,则AE=PE+PB.可以通过延长DB、AP相交于点F,再连接AD证明结论成立.请写出证明过程;
(3)如图3,PA.PB组成⊙0的一条折弦,若C是优弧AB的中点,直线CD⊥PA于点E,则AE,PE与PB之间存在怎样的数量关系?写出结论,不必证明.

查看答案和解析>>

在⊙O中,AB是非直径的弦,直径CD交AB于M,如果AC=CB,则由垂径定理可得
AB⊥CD
AB⊥CD
AE=BE
AE=BE
AD
=
BD
AD
=
BD

查看答案和解析>>

精英家教网在直径为50cm的圆中,弦AB为40cm,弦CD为48cm,且AB∥CD,求AB与CD之间距离.
解:如图所示,过O作OM⊥AB,
∵AB∥CD,∴ON⊥CD.
在Rt△BMO中,BO=25cm.
由垂径定理得BM=
1
2
AB=
1
2
×40=20cm,
∴OM=
OB2-BM2
=
252-202
=15cm.
同理可求ON=
OC2-CN2
=
252-242
=7cm,
所以MN=OM-ON=15-7=8cm.
以上解答有无漏解,漏了什么解,请补上.

查看答案和解析>>

小明学习了垂径定理,做了下面的探究,请根据题目要求帮小明完成探究.
(1)更换定理的题设和结论可以得到许多真命题.如图1,在⊙0中,C是劣弧AB的中点,直线CD⊥AB于点E,则AE=BE.请证明此结论;
(2)从圆上任意一点出发的两条弦所组成的折线,成为该圆的一条折弦.如图2,PA,PB组成⊙0的一条折弦.C是劣弧AB的中点,直线CD⊥PA于点E,则AE=PE+PB.可以通过延长DB、AP相交于点F,再连接AD证明结论成立.请写出证明过程;
(3)如图3,PA.PB组成⊙0的一条折弦,若C是优弧AB的中点,直线CD⊥PA于点E,则AE,PE与PB之间存在怎样的数量关系?写出结论,不必证明.

查看答案和解析>>


同步练习册答案