如图,在等腰梯形ABCE中,BC∥AE且AB=BC,以点E为坐标原点建立平面直角坐标系,若将梯形ABCD沿AC折叠,使点B恰好落在x轴上点D位置,过C、D两点的直线与y轴交于点F.
(1)试判断四边形ABCD是怎样的特殊四边形,并说明你的理由;
(2)如果∠BAE=60°,AB=2cm,那么在y轴上是否存在一点P,使以P、D、F为顶点的三角形构成等腰三角形,若存在,请求出所有可能的P点坐标,若不存在,请说明理由;
(3)在(2)的条件下,若将△EDF沿x轴正方向以1cm/s的速度平移到点E与点A重合时为止,设△EDF在平移过程中与△ECA重合部分的面积为S,平移的时间为x秒,试求出S与x之间的函数关系式及自变量范围,并求出何时S有最大值,最大值是多少?