题目列表(包括答案和解析)
给出问题:已知满足,试判定的形状.某学生的解答如下:
解:(i)由余弦定理可得,
,
,
,
故是直角三角形.
(ii)设外接圆半径为.由正弦定理可得,原式等价于
,
故是等腰三角形.
综上可知,是等腰直角三角形.
请问:该学生的解答是否正确?若正确,请在下面横线中写出解题过程中主要用到的思想方法;若不正确,请在下面横线中写出你认为本题正确的结果. .
如图,在正四棱锥中,.
(1)求该正四棱锥的体积;
(2)设为侧棱的中点,求异面直线与
所成角的大小.
【解析】第一问利用设为底面正方形中心,则为该正四棱锥的高由已知,可求得,
所以,
第二问设为中点,连结、,
可求得,,,
在中,由余弦定理,得
.
所以,
b2+c2-a2 |
2bc |
a2+c2-b2 |
2ac |
观察下面两个推理过程及结论:
若锐角满足,以角分别为内角构造一个三角形,依据正弦定理和余弦定理可得到等式:,
若锐角满足,则,以角分别为内角构造一个三角形,依据正弦定理和余弦定理可以得到的等式:.
则:若锐角满足,类比上面推理方法,可以得到的一个等式是______________.
观察下面两个推理过程及结论:
若锐角满足,以角分别为内角构造一个三角形,依据正弦定理和余弦定理可得到等式:,
若锐角满足,则,以角分别为内角构造一个三角形,依据正弦定理和余弦定理可以得到的等式:.
则:若锐角满足,类比上面推理方法,可以得到的一个等式是______________.
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com