已知 解:.将代入到上式.则可得 查看更多

 

题目列表(包括答案和解析)

阅读以下材料:

若关于的三次方程为整数)有整数解,则将代入方程得:    

     ∴

 ∵都是整数    ∴是整数    ∴的因数.

上述过程说明:整数系数方程的整数解只能是常数项的因数.如:∵方程中常数项-2的因数为:±1和±2,∴将±1和±2分别代入方程得:=-2是该方程的整数解,-1、1、2不是方程的整数解.

解决下列问题:

(1)根据上面的学习,方程的整数解可能          ;

(2)方程有整数解吗?若有,求出整数解;若没有,说明理由.

查看答案和解析>>

阅读下列范例,按要求解答问题.
例:已知实数a,b,c满足:a+b+2c=1,a2+b2+6c+
3
2
=0
,求a,b,c的值.
解:∵a+b+2c=1,∴a+b=1-2c,
a=
1-2c
2
+t,b=
1-2c
2
-t

a2+b2+6c+
3
2
=0

将①代入②得:(
1-2c
2
+t)2+(
1-2c
2
-t)2+6c+
3
2
=0

整理得:t2+(c2+2c+1)=0,即t2+(c+1)2=0,∴t=0,c=-1
将t,c的值同时代入①得:a=
3
2
,b=
3
2
.∴a=b=
3
2
,c=-1

以上解法是采用“均值换元”解决问题.一般地,若实数x,y满足x+y=m,则可设x=
m
2
+t,y=
m
2
-t
,合理运用这种换元技巧,可顺利解决一些问题.现请你根据上述方法试解决下面问题:
已知实数a,b,c满足:a+b+c=6,a2+b2+c2=12,求a,b,c的值.

查看答案和解析>>

根据所给的基本材料,请你进行适当的处理,编写一道综合题.
编写要求:①提出具有综合性、连续性的三个问题;②给出正确的解答过程;③写出编写意图和学生答题情况的预测.
材料①:如图,先把一矩形纸片ABCD对折,得到折痕MN,然后把B点叠在折痕线上,得到△ABE,再过点B把矩形ABCD第三次折叠,使点D落在直线AD上,得到折痕PQ.当沿着BE第四次将该纸片折叠后,点A就会落在EC上.
精英家教网
材料②:已知AC是∠MAN的平分线.
(1)在图1中,若∠MAN=120°,∠ABC=ADC=90°,求证:AB+AD=AC;
(2)在图2中,若∠MAN=120°,∠ABC+∠ADC=180°,则(1)中的结论是否仍然成立?若成立,请给出证明;若不成立,请说明理由;
(3)在图3中:若∠MAN=α(0°<α<180°),∠ABC+∠ADC=180°,
则AB+AD=
 
AC(用含α的三角函数表示).
精英家教网
材料③:
已知:如图甲,在Rt△ACB中,∠C=90°,AC=4cm,BC=3cm,点P由B出发沿线段BA向点A匀速运动,速度为1cm/s;点Q由A出发沿线段AC向点C匀速运动,速度为2cm/s;连接PQ,设运动的时间为t(s)(0<t<2).
精英家教网
编写试题选取的材料是
 
(填写材料的序号)
编写的试题是:(1)设△AQP的面积为y(cm2),求y与t之间的函数关系式.
(2)是否存在某一时刻t,使线段PQ恰好把Rt△ACB的周长和面积同时平分?若存在,求出此时t的值.
(3)如图(2),连接PC,并把△PQC沿QC翻折得到四边形PQP'C.是否存在某一时刻t,使四边形PQP'C为菱形?若存在,求出此时菱形的边长.
试题解答(写出主要步骤即可):(1)过点Q作QD⊥AP于点D,证△AQD∽△ABC,利用相似性质及面积解答;
(2)分别求得Rt△ACB的周长和面积,由周长求出t,代入函数解析式验证;
(3)利用余弦定理得出PC、PQ,联立方程,求得t,再代入PC解得答案.

查看答案和解析>>

2008年5月1日,目前世界上最长的跨海大桥--杭州湾跨海大桥通车了.通车后,苏南A地到宁波港的路程比原来缩短了120千米.已知运输车速度不变时,行驶时间将从原来的3时20分缩短到2时.
(1)求A地经杭州湾跨海大桥到宁波港的路程.
(2)若货物运输费用包括运输成本和时间成本,已知某车货物从A地到宁波港的运输成本是每千米1.8元,时间成本是每时28元,那么该车货物从A地经杭州湾跨海大桥到宁波港的运输费用是多少元?
(3)A地准备开辟宁波方向的外运路线,即货物从A地经杭州湾跨海大桥到宁波港,再从宁波港运到B地.若有一批货物(不超过10车)从A地按外运路线运到B地的运费需8320元,其中从A地经杭州湾跨海大桥到宁波港的每车运输费用与(2)中相同,从宁波港到B地的海上运费对一批不超过10车的货物计费方式是:一车800元,当货物每增加1车时,每车的海上运费就减少20元,问这批货物有几车?

查看答案和解析>>

2008年5月1日,目前世界上最长的跨海大桥——杭州湾跨海大桥通车了.通车后,苏南A地到宁波港的路程比原来缩短了120千米.已知运输车速度不变时,行驶时间将从原来的3时20分缩短到2时.
(1)求A地经杭州湾跨海大桥到宁波港的路程.
(2)若货物运输费用包括运输成本和时间成本,已知某车货物从A地到宁波港的运输成本是每千米1.8元,时间成本是每时28元,那么该车货物从A地经杭州湾跨海大桥到宁波港的运输费用是多少元?
(3)A地准备开辟宁波方向的外运路线,即货物从A地经杭州湾跨海大桥到宁波港,再从宁波港运到B地.若有一批货物(不超过10车)从A地按外运路线运到B地的运费需8320元,其中从A地经杭州湾跨海大桥到宁波港的每车运输费用与(2)中相同,从宁波港到B地的海上运费对一批不超过10车的货物计费方式是:一车800元,当货物每增加1车时,每车的海上运费就减少20元,问这批货物有几车?

查看答案和解析>>


同步练习册答案