28. 已知抛物线y=ax2+bx+c的顶点A在x轴上.与y轴的交点为B(0.1).且b=-4ac. (1) 求抛物线的解析式, (2) 在抛物线上是否存在一点C.使以BC为直径的圆经过抛物线的顶点A?若不存在说明理由,若存在.求出点C的坐标.并求出此时圆的圆心点P的坐标, 小题的结论.你发现B.P.C三点的横坐标之间.纵坐标之间分别有何关系? 28.解:(1)由抛物线过B(0,1) 得c=1. 又b=-4ac, 顶点A(-,0), ∴-==2c=2.∴A(2,0). ---------------2分 将A点坐标代入抛物线解析式.得4a+2b+1=0 . ∴ 解得a =,b =-1. 故抛物线的解析式为y=x2-x+1. ---------------4分 另解: 由抛物线过B(0,1) 得c=1.又b2-4ac=0, b=-4ac.∴b=-1. ---2分 ∴a=,故y=x-x+1. -----------------4分 (2)假设符合题意的点C存在.其坐标为C(x.y), 作CD⊥x轴于D ,连接AB.AC. ∵A在以BC为直径的圆上,∴∠BAC=90°. ∴ △AOB∽△CDA. ∴OB·CD=OA·AD. 即1·y=2(x-2). ∴y=2x-4. --------6分 由 解得x1=10,x2=2. ∴符合题意的点C存在.且坐标为 . ---------8分 ∵P为圆心.∴P为BC中点. 当点C坐标为 时.取OD中点P1 .连PP1 , 则PP1为梯形OBCD中位线. ∴PP1=(OB+CD)=.∵D , ∴P1 (5,0), ∴P (5, ). 当点C坐标为 (2,0)时, 取OA中点P2 .连PP2 , 则PP2为△OAB的中位线. ∴PP2=OB=.∵A (2,0), ∴P2(1,0), ∴P (1,). 故点P坐标为(5, ),或(1,). --------------10分 (3)设B.P.C三点的坐标为B(x1,y1), P(x2,y2), C(x3,y3).由(2)可知: ---------------12分 查看更多

 

题目列表(包括答案和解析)

(湖北卷)(本小题满分14分)

       已知不等式为大于2的整数,表示不超过的最大整数. 设数列的各项为正,且满足

   (Ⅰ)证明

(Ⅱ)猜测数列是否有极限?如果有,写出极限的值(不必证明);

(Ⅲ)试确定一个正整数N,使得当时,对任意b>0,都有

查看答案和解析>>

(本小题满分12分)
某公司销售一种新型节能产品,现准备从国内和国外两种销售方案中选择一种进行销售.若只在国内销售,销售价格y(元/件)与月销量x(件)的函数关系式为y =x+150,成本为20元/件,无论销售多少,每月还需支出广告费62500元,设月利润为w(元)(利润 = 销售额-成本-广告费).若只在国外销售,销售价格为150元/件,受各种不确定因素影响,成本为a元/件(a为常数,10≤a≤40),当月销量为x(件)时,每月还需缴纳x2 元的附加费,设月利润为w(元)(利润 = 销售额-成本-附加费).
【小题1】(1)当= 1000时,=        元/件,w =        元;
【小题2】(2)分别求出wwx间的函数关系式(不必写x的取值范围);
【小题3】(3)当x为何值时,在国内销售的月利润最大?若在国外销售月利润的最大值与在国内销售月利润的最大值相同,求a的值;
【小题4】(4)如果某月要将5000件产品全部销售完,请你通过分析帮公司决策,选择在国内还是在国外销售才能使所获月利润较大?
参考公式:抛物线的顶点坐标是

查看答案和解析>>

(本小题满分12分)图形既关于点O中心对称,又关于直线AC,BD对称,AC=10,

BD=6,已知点E,M是线段AB上的动点(不与端点重合),点O到EF,MN的距离分别

,△OEF与△OGH组成的图形称为蝶形。

(1)求蝶形面积S的最大值;

(2)当以EH为直径的圆与以MQ为直径的圆重合时,求满足的关系式,并求的取值范围。

 

查看答案和解析>>

(本小题满分12分)

如图(1),△ABC与△EFD为等腰直角三角形,AC与DE重合,AB=EF=9,∠BAC=∠DEF=90°,固定△ABC,将△EFD绕点A 顺时针旋转,当DF边与AB边重合时,旋转中止。不考虑旋转开始和结束时重合的情况,设DE、DF(或它们的延长线)分别交BC(或它的延长线)于G、H点,如图(2)。

1.(1)问:始终与△AGC相似的三角形有               

2.(2)设CG=x,BH=y,求y关于x的函数关系式(只要求根据2的情况说明理由);

3.(3)问:当x为何值时,△AGH是等腰三角形?

 

查看答案和解析>>

(本小题满分12分)图形既关于点O中心对称,又关于直线AC,BD对称,AC=10,
BD=6,已知点E,M是线段AB上的动点(不与端点重合),点O到EF,MN的距离分别
,△OEF与△OGH组成的图形称为蝶形。
(1)求蝶形面积S的最大值;
(2)当以EH为直径的圆与以MQ为直径的圆重合时,求满足的关系式,并求的取值范围。

查看答案和解析>>


同步练习册答案