26. (1)如图1.图2.图3.在中.分别以为边.向外作正三角形.正四边形.正五边形.相交于点. ①如图1.求证:, ②探究:如图1. , 如图2. , 如图3. . (2)如图4.已知:是以为边向外所作正边形的一组邻边,是以为边向外所作正边形的一组邻边.的延长相交于点. ①猜想:如图4. (用含的式子表示), ②根据图4证明你的猜想. (1)①证法一:与均为等边三角形. .······················································································ 2分 且············································· 3分 . 即······················································ 4分 .················································ 5分 证法二:与均为等边三角形. .······················································································ 2分 且····················································································· 3分 可由绕着点按顺时针方向旋转得到·························· 4分 .························································································· 5分 ②...································································· 8分 (2)①···································································································· 10分 ②证法一:依题意.知和都是正边形的内角... .即.························· 11分 .······················································································· 12分 ..··· 13分 . ······································ 14分 证法二:同上可证 .···················································· 12分 .如图.延长交于. . ······························ 13分 ··············· 14分 证法三:同上可证 .···················································· 12分 . . ······················································ 13分 即······································································ 14分 证法四:同上可证 .···················································· 12分 .如图.连接. .·································· 13分 即····························· 14分 注意:此题还有其它证法.可相应评分. 查看更多

 

题目列表(包括答案和解析)

(2011山东烟台,26,14分)

如图,在直角坐标系中,梯形ABCD的底边ABx轴上,底边CD的端点Dy轴上.直线CB的表达式为y=-x+,点AD的坐标分别为(-4,0),(0,4).动点PA点出发,在AB上匀速运行.动点Q自点B出发,在折线BCD上匀速运行,速度均为每秒1个单位.当其中一个动点到达终点时,它们同时停止运动.设点P运动t(秒)时,△OPQ的面积为s(不能构成△OPQ的动点除外).

(1)求出点BC的坐标;

(2)求st变化的函数关系式;

(3)当t为何值时s有最大值?并求出最大值.

 

查看答案和解析>>

(2011山东烟台,26,14分)
如图,在直角坐标系中,梯形ABCD的底边ABx轴上,底边CD的端点Dy轴上.直线CB的表达式为y=-x+,点AD的坐标分别为(-4,0),(0,4).动点PA点出发,在AB上匀速运行.动点Q自点B出发,在折线BCD上匀速运行,速度均为每秒1个单位.当其中一个动点到达终点时,它们同时停止运动.设点P运动t(秒)时,△OPQ的面积为s(不能构成△OPQ的动点除外).
(1)求出点BC的坐标;
(2)求st变化的函数关系式;
(3)当t为何值时s有最大值?并求出最大值.

查看答案和解析>>

(2011山东烟台,26,14分)
如图,在直角坐标系中,梯形ABCD的底边ABx轴上,底边CD的端点Dy轴上.直线CB的表达式为y=-x+,点AD的坐标分别为(-4,0),(0,4).动点PA点出发,在AB上匀速运行.动点Q自点B出发,在折线BCD上匀速运行,速度均为每秒1个单位.当其中一个动点到达终点时,它们同时停止运动.设点P运动t(秒)时,△OPQ的面积为s(不能构成△OPQ的动点除外).
(1)求出点BC的坐标;
(2)求st变化的函数关系式;
(3)当t为何值时s有最大值?并求出最大值.

查看答案和解析>>

(2011山东烟台,26,14分)

如图,在直角坐标系中,梯形ABCD的底边ABx轴上,底边CD的端点Dy轴上.直线CB的表达式为y=-x+,点AD的坐标分别为(-4,0),(0,4).动点PA点出发,在AB上匀速运行.动点Q自点B出发,在折线BCD上匀速运行,速度均为每秒1个单位.当其中一个动点到达终点时,它们同时停止运动.设点P运动t(秒)时,△OPQ的面积为s(不能构成△OPQ的动点除外).

(1)求出点BC的坐标;

(2)求st变化的函数关系式;

(3)当t为何值时s有最大值?并求出最大值.

 

查看答案和解析>>

计算:
(1)26+(-14)+(-16)+8
(2)(-5.5)+(-3.2)-(-2.5)-4.8
(3)(-8)×(-25)×(-0.02)
(4)(
1
2
-
5
9
+
5
6
-
7
12
)
×(-36)
(5)(-1)÷(
1
3
-
1
2
)

(6)25×
3
4
+(-25)×
1
2
+25×(-
1
4

(7)
15
8
÷(-10)×(-
10
3
)÷(-
15
4
)

(8)99
17
18
×(-9)

查看答案和解析>>


同步练习册答案