探索研究 如图.在直角坐标系中.点为函数在第一象限内的图象上的任一点.点的坐标为.直线过且与轴平行.过作轴的平行线分别交轴.于.连结交轴于.直线交轴于. (1)求证:点为线段的中点, (2)求证:①四边形为平行四边形, ②平行四边形为菱形, (3)除点外.直线与抛物线有无其它公共点?并说明理由. (1)法一:由题可知. .. .······················································································ .即为的中点.································································ 法二:...····················································· 又轴..··········································································· 可知.. .. .······················································································· . 又.四边形为平行四边形.············································ ②设.轴.则.则. 过作轴.垂足为.在中. . 平行四边形为菱形.········································································ (3)设直线为.由.得.代入得: 直线为.···················· 设直线与抛物线的公共点为.代入直线关系式得: ..解得.得公共点为. 所以直线与抛物线只有一个公共点.··································· 72 如图.在平面直角坐标系中.点.点分别在轴.轴的正半轴上.且满足. (1)求点.点的坐标. (2)若点从点出发.以每秒1个单位的速度沿射线运动.连结.设的面积为.点的运动时间为秒.求与的函数关系式.并写出自变量的取值范围. 的条件下.是否存在点.使以点为顶点的三角形与相似?若存在.请直接写出点的坐标,若不存在.请说明理由. (08黑龙江齐齐哈尔28题解析)解:(1) .················································································ . 点.点分别在轴.轴的正半轴上 ····························································································· (2)求得····················································································· (每个解析式各1分.两个取值范围共1分)············································ (3),,, ·························································································································· 注:本卷中所有题目.若由其它方法得出正确结论.酌情给分. 73如图13.已知抛物线经过原点O和x轴上另一点A,它的对称轴x=2 与x轴交于点C.直线y=-2x-1经过抛物线上一点B(-2,m).且与y轴.直线x=2分别交于点D.E. (1)求m的值及该抛物线对应的函数关系式, (2)求证:① CB=CE ,② D是BE的中点, (3)若P(x.y)是该抛物线上的一个动点.是否存在这样的点P,使得PB=PE,若存在.试求出所有符合条件的点P的坐标,若不存在.请说明理由. (1)∵ 点B(-2,m)在直线y=-2x-1上. ∴ m=-2×(-2)-1=3. ------------ ∴ B ∵ 抛物线经过原点O和点A.对称轴为x=2. ∴ 点A的坐标为(4,0) . 设所求的抛物线对应函数关系式为y=a(x-0)(x-4). -------- 将点B代入上式.得3=a.∴ . ∴ 所求的抛物线对应的函数关系式为.即. (2)①直线y=-2x-1与y轴.直线x=2的交点坐标分别为D E. 过点B作BG∥x轴.与y轴交于F.直线x=2交于G. 则BG⊥直线x=2.BG=4. 在Rt△BGC中.BC=. ∵ CE=5. ∴ CB=CE=5. -------- ②过点E作EH∥x轴.交y轴于H. 则点H的坐标为H. 又点F.D的坐标为F(0,3).D. ∴ FD=DH=4.BF=EH=2.∠BFD=∠EHD=90°. ∴ △DFB≌△DHE (SAS). ∴ BD=DE. 即D是BE的中点. ------------ (3) 存在. ------------ 由于PB=PE.∴ 点P在直线CD上. ∴ 符合条件的点P是直线CD与该抛物线的交点. 设直线CD对应的函数关系式为y=kx+b. 将D C(2,0)代入.得. 解得 . ∴ 直线CD对应的函数关系式为y=x-1. ∵ 动点P的坐标为(x.). ∴ x-1=. ------------ 解得 .. ∴ .. ∴ 符合条件的点P的坐标为(.)或(.).- (注:用其它方法求解参照以上标准给分.) 查看更多

 

题目列表(包括答案和解析)

(2010江苏 镇江)探索发现(本小题满分9分)

        如图,在直角坐标系的直角顶点A,C始终在x轴的正半轴上,B,D在第一象限内,点B在直线OD上方,OC=CD,OD=2,M为OD的中点,AB与OD相交于E,当点B位置变化时,

    试解决下列问题:

   (1)填空:点D坐标为        

   (2)设点B横坐标为t,请把BD长表示成关于t的函数关系式,并化简;

   (3)等式BO=BD能否成立?为什么?

   (4)设CM与AB相交于F,当△BDE为直角三角形时,判断四边形BDCF的形状,并证明你的结论.

查看答案和解析>>

(2010 江苏镇江)运算求解(本小题满分6分)

        在直角坐标系xOy中,直线l过(1,3)和(3,1)两点,且与x轴,y轴分别交于A,B两点.

   (1)求直线l的函数关系式;

   (2)求△AOB的面积.

查看答案和解析>>

(2010 江苏镇江)推理证明(本小题满分7分)

如图,已知△ABC中,AB=BC,以AB为直径的⊙O交AC于点D,过D作DE⊥BC,垂足为E,连结OE,CD=,∠ACB=30°.

   (1)求证:DE是⊙O的切线;

   (2)分别求AB,OE的长;

   (3)填空:如果以点E为圆心,r为半径的圆上总存在不同的两点到点O的距离为1,则r的取值范围为         .

查看答案和解析>>

(2010 江苏镇江)运算求解(本小题满分6分)

    已知二次函数的图象C1与x轴有且只有一个公共点.

   (1)求C1的顶点坐标;

   (2)将C1向下平移若干个单位后,得抛物线C2,如果C2与x轴的一个交点为A(—3,0),求C2的函数关系式,并求C2与x轴的另一个交点坐标;

   (3)若的取值范围.

查看答案和解析>>

(2010 江苏镇江)推理证明(本小题满分6分)

    如图,在△ABC和△ADE中,点E在BC边上,∠BAC=∠DAE,∠B=∠D,AB=AD.

   (1)求证:△ABC≌△ADE;

   (2)如果∠AEC=75°,将△ADE绕着点A旋转一个锐角后与△ABC重合,求这个旋转角的大小.

查看答案和解析>>


同步练习册答案