如图10.平行四边形ABCD中.AB=5.BC=10.BC边上的高AM=4.E为 BC边上的一个动点(不与B.C重合).过E作直线AB的垂线.垂足为F. FE与DC的延长线相交于点G.连结DE.DF.. (1) 求证:ΔBEF ∽ΔCEG. (2) 当点E在线段BC上运动时.△BEF和△CEG的周长之间有什么关系?并说明你的理由. (3)设BE=x.△DEF的面积为 y.请你求出y和x之间的函数关系式.并求出当x为何值时,y有最大值.最大值是多少? (1) 因为四边形ABCD是平行四边形. 所以 1分 所以 所以 ························································································· 3分 (2)的周长之和为定值.······················································ 4分 理由一: 过点C作FG的平行线交直线AB于H . 因为GF⊥AB.所以四边形FHCG为矩形.所以 FH=CG.FG=CH 因此.的周长之和等于BC+CH+BH 由 BC=10.AB=5.AM=4.可得CH=8.BH=6. 所以BC+CH+BH=24 ····················································································· 6分 理由二: 由AB=5.AM=4.可知 在Rt△BEF与Rt△GCE中.有: . 所以.△BEF的周长是. △ECG的周长是 又BE+CE=10.因此的周长之和是24.······························· 6分 (3)设BE=x.则 所以 ································· 8分 配方得:. 所以.当时.y有最大值.······································································ 9分 最大值为.······································································································· 10分 52 如图13.在平面直角坐标系中.圆M经过原点O.且与轴.轴分别相交于两点. (1)求出直线AB的函数解析式, (2)若有一抛物线的对称轴平行于轴且经过点M.顶点C在⊙M上.开口向下.且经过点B.求此抛物线的函数解析式, 中的抛物线交轴于D.E两点.在抛物线上是否存在点P.使得?若存在.请求出点P的坐标,若不存在.请说明理由. 解:(1)设AB的函数表达式为 ∵∴∴ ∴直线AB的函数表达式为.···························································· 3分 (2)设抛物线的对称轴与⊙M相交于一点.依题意知这一点就是抛物线的顶点C.又设对称轴与轴相交于点N.在直角三角形AOB中. 因为⊙M经过O.A.B三点.且⊙M的直径.∴半径MA=5.∴N为AO的中点AN=NO=4.∴MN=3∴CN=MC-MN=5-3=2.∴C点的坐标为. 设所求的抛物线为 则 ∴所求抛物线为 ········································································ 7分 (3)令得D.E两点的坐标为D.所以DE=4. 又AC=直角三角形的面积 假设抛物线上存在点. 当故满足条件的存在.它们是. ······················· 10分 53 已知抛物线经过点A(5.0).B和原点. (1)求抛物线的函数关系式, (2)若过点B的直线与抛物线相交于点C(2.m).请求出OBC的面积S的值. (3)过点C作平行于x轴的直线交y轴于点D.在抛物线对称轴右侧位于直线DC下方的抛物线上.任取一点P.过点P作直线PF平行于y轴交x轴于点F.交直线DC于点E. 直线PF与直线DC及两坐标轴围成矩形OFED.是否存在点P.使得OCD与CPE相似?若存在.求出点P的坐标,若不存在.请说明理由. 解:(1)由题意得: 2分 解得 ·············································· 3分 故抛物线的函数关系式为······· 4分 (2)在抛物线上. 5分 点坐标为(2.6)..C在直线上 解得 直线BC的解析式为································································ 6分 设BC与x轴交于点G.则G的坐标为(4.0) ································································ 7分 (3)存在P.使得∽········································································ 8分 设P. 故 若要∽.则要或 即或 解得或 又在抛物线上.或 解得或 故P点坐标为和··································································· 10分 (只写出一个点的坐标记9分) 查看更多

 

题目列表(包括答案和解析)

(本题满分10分,其中第(1)4分、第(2)小题6分)
某公司销售一种商品,这种商品一天的销量y(件)与售价x(元/件)之间存在着如图所示的一次函数关系,且40≤x70.

(1)根据图像,求x之间的函数解析式;
(2)设该销售公司一天销售这种商品的收入为w元.
①试用含x的代数式表示w
②如果该商品的成本价为每件30元,试问当售价定为每件多少元时,该销售公司一天销售该商品的盈利为1万元?(收入=销量×售价)

查看答案和解析>>

(本题满分10分)
已知二次函数
【小题1】(1)怎样平移这个函数的图象,才能使它经过两点?写出平移后的新函数的解析式;
【小题2】 (2) 求使新函数的图象位于轴上方的实数的取值范围。

查看答案和解析>>

(本题满分10分)已知函数y=mx2-6x+1(m是常数).
【小题1】⑴求证:不论m为何值,该函数的图象都经过y轴上的一个定点;
【小题2】⑵若该函数的图象与x轴只有一个交点,求m的值.

查看答案和解析>>

(本题满分10分)已知:如图,在△ABC中,BC=AC,以BC为直径的⊙O与边AB相交于点DDEAC,垂足为点E

【小题1】(1)求证:点DAB的中点;
【小题2】(2)判断DE与⊙O的位置关系,并证明你的结论;
【小题3】(3)若⊙O的半径为9,AB=12,求DE的长.

查看答案和解析>>

(本题满分10分,每小题5分)先化简,再求值:
(1),其中
(2),其中

查看答案和解析>>


同步练习册答案