27. 如图.已知点从出发.以1个单位长度/秒的速度沿轴向正方向运动.以为顶点作菱形.使点在第一象限内.且,以为圆心.为半径作圆.设点运动了秒.求: (1)点的坐标(用含的代数式表示), (2)当点在运动过程中.所有使与菱形的边所在直线相切的的值. 27.解:(1)过作轴于. .. .. 点的坐标为.··· (2)①当与相切时.切点为.此时. .. .··········· ②当与.即与轴相切时.则切点为.. 过作于.则.················································· ..············································· ③当与所在直线相切时.设切点为.交于. 则.. .························································ 过作轴于.则. . 化简.得. 解得. . . 所求的值是.和.···························· 查看更多

 

题目列表(包括答案和解析)

(本小题满分10分)

在图1至图3中,直线MN与线段AB相交

于点O,∠1 = ∠2 = 45°.

1.(1)如图1,若AO OB,请写出AOBD

的数量关系和位置关系;

2.(2)将图1中的MN绕点O顺时针旋转得到

图2,其中AO = OB

求证:AC BDAC ⊥ BD

3.(3)将图2中的OB拉长为AOk倍得到

图3,求的值.

 

查看答案和解析>>

(本小题满分10分)设函数为实数)
(1)写出其中的两个特殊函数,使它们的图像不全是抛物线,并在同一直角坐标系中,用描点法画出这两个特殊函数的图像;
(2)根据所画图像,猜想出:对任意实数,函数的图像都具有的特征,并给予证明;
(3)对任意负实数,当时,随着的增大而增大,试求出的一个值

查看答案和解析>>

(本小题满分10分)某市在道路改造过程中,需要铺设一条长为1000米的管道,决定由甲、乙两个工程队来完成这一工程.已知甲工程队比乙工程队每天能多铺设20米,且甲工程队铺设350米所用的天数与乙工程队铺设250米所用的天数相同.

(1)甲、乙工程队每天各能铺设多少米?

(2)如果要求完成该项工程的工期不超过10天,那么为两工程队分配工程量(以百米为单位)的方案有几种?请你帮助设计出来.

 

查看答案和解析>>

(本小题满分10分)
如图14①至图14④中,两平行线ABCD音的距离均为6,点MAB上一定点.
思考:如图14①中,圆心为O的半圆形纸片在AB、CD之间(包括AB、CD),其直径MN在AB上,MN=8,点P为半圆上一点,设∠MOP=α,当α=________度时,点PCD的距离最小,最小值为____________.
探究一在图14①的基础上,以点M为旋转中心,在ABCD之间顺时针旋转该半圆形纸片,直到不能再转动为止.如图14②,得到最大旋转角∠BMO=_______度,此时点NCD的距离是______________.
探究二将图14①中的扇形纸片NOP按下面对α的要求剪掉,使扇形纸片MOP绕点MABCD之间顺时针旋转.
⑴如图14③,当α=60°时,求在旋转过程中,点PCD的最小距离,并请指出旋转角∠BMO的最大值:
⑵如图14④,在扇形纸片MOP旋转过程中,要保证点P能落在直线CD上,请确定α的取值范围.
(参考数据:sin49°=cos41°=tan37°=
            

查看答案和解析>>

(本小题满分10分)
 
观察思考
某种在同一平面进行传动的机械装置如图14-1,图14-2是它的示意图.其工作原理是:滑块Q在平直滑道l上可以左右滑动,在Q滑动的过程中,连杆PQ也随之运动,并且PQ带动连杆OP绕固定点O摆动.在摆动过程中,两连杆的接点P在以OP为半径的⊙O上运动.数学兴趣小组为进一步研究其中所蕴含的数学知识,过点O作OH ⊥l于点H,并测得OH = 4分米,PQ = 3分米,OP = 2分米.
解决问题
(1)点Q与点O间的最小距离是       分米;点Q与点O间的最大距离是       分米;点Q在l上滑到最左端的位置与滑到最右端位置间的距离是       分米.
(2)

如图14-3,小明同学说:“当点Q滑动到点H的位置时,PQ与⊙O是相切的.”你认为他的判断对吗?为什么?
(3)①小丽同学发现:“当点P运动到OH上时,点P到l的距离最小.”事实上,还存在着点P到l距离最大的位置,此时,点P到l的距离是       分米;
②当OP绕点O左右摆动时,所扫过的区域为扇形,求这个扇形面积最大时圆心角的度数.

查看答案和解析>>


同步练习册答案