27. 如图.⊙的半径为.正方形顶点坐标为.顶点在⊙上运动. (1)当点运动到与点.在同一条直线上时,试证明直线与⊙相切, (2)当直线与⊙相切时.求所在直线对应的函数关系式, (3)设点的横坐标为.正方形的面积为.求与之间的函数关系式.并求出的最大值与最小值. 24.如图.在矩形中...点是边上的动点(点不与点.点重合).过点作直线.交边于点.再把沿着动直线对折.点的对应点是点.设的长度为.与矩形重叠部分的面积为. (1)求的度数, (2)当取何值时.点落在矩形的边上? (3)①求与之间的函数关系式, ②当取何值时.重叠部分的面积等于矩形面积的? 6024. 如图.在中....分别是边的中点.点从点出发沿方向运动.过点作于.过点作交于 .当点与点重合时.点停止运动.设.. (1)求点到的距离的长, (2)求关于的函数关系式(不要求写出自变量的取值范围), (3)是否存在点.使为等腰三角形?若存在.请求出所有满足要求的的值,若不存在.请说明理由. 24. 解:(1).... 点为中点.. .. . .. (2).. .. .. 即关于的函数关系式为:. (3)存在.分三种情况: ①当时.过点作于.则. .. . .. .. ②当时.. . ③当时.则为中垂线上的点. 于是点为的中点. . . .. 综上所述.当为或6或时.为等腰三角形. 查看更多

 

题目列表(包括答案和解析)

(本题满分12分,任选一题作答.)
Ⅰ、如图①,在平面直角坐标系中,O为坐标原点,边长为5的正三角形OAB的OA边在x轴的正半轴上.点C、D同时从点O出发,点C以1单位长/秒的速度向点A运动,点D以2个单位长/秒的速度沿折线OBA运动.设运动时间为t秒,0<t<5.
(1)当0<t<
52
时,证明DC⊥OA;
(2)若△OCD的面积为S,求S与t的函数关系式;
(3)以点C为中心,将CD所在的直线顺时针旋转60°交AB边于点E,若以O、C、E、D为顶点的四边形是梯形,求点E的坐标.
Ⅱ、(1)如图Ⅱ-1,已知△ABC,过点A画一条平分三角形面积的直线;
(2)如图Ⅱ-2,已知l1∥l2,点E,F在l1上,点G,H在l2上,试说明△EGO与△FHO面积相等.
(3)如图Ⅱ-3,点M在△ABC的边上,过点M画一条平分三角形面积的直线.

查看答案和解析>>

(本题满分12分)已知:如图一次函数y=x+1的图象与x轴交于点A,与y轴交于点B;二次函数y=x2+bx+c的图象与一次函数y=x+1的图象交于B、C两点,与x轴交于D、E两点且D点坐标为(1,0)

(1)求二次函数的解析式;
(2)求四边形BDEC的面积S;
(3)在x轴上是否存在点P,使得△PBC是以P为直角顶点的直角三角形?若存在,求出所有的点P,若不存在,请说明理由.

查看答案和解析>>

(本题满分12分) 如图,在平面直角坐标系中,抛物线与x轴交于点A、B

(点A在点B的左侧),与y轴交于点C(0,4),顶点为(1,).

(1)求抛物线的函数解析式;

(2)抛物线的对称轴与x轴交于点D,点P在对称轴上且使△CDP为等腰三角形.请直接写出满足条件的所有点的坐标P;

(3)若点E是线段AB上的一个动点(与点A、B不重合),连接AC、BC,过点E作EF∥AC交线段BC于点F,连接CE,记△CEF的面积为S,S是否存在最大值?若存在,请求出S的最大值及此时点E的坐标;若不存在,请说明理由.

 

查看答案和解析>>

(本题满分12分)如图1,抛物线y=ax2+bx+3经过A(-3,0),B(-1,0)两点.(1)求抛物线的解析式;
(2)设抛物线的顶点为M,直线y=-2x+9与y轴交于点C,与直线OM交于点D.现将抛物线平移,保持顶点在直线OD上.若平移的抛物线与射线CD(含端点C)只有一个公共点,求它的顶点横坐标的值或取值范围;
(3)如图2,将抛物线平移,当顶点至原点时,过Q(0,3)作不平行于x轴的直线交抛物线于E,F两点.问在y轴的负半轴上是否存在点P,使△PEF的内心在y轴上.若存在,求出点P的坐标;若不存在,请说明理由.

查看答案和解析>>

(本题满分12分,每小题6分)
(1) 在如图所示的平面直角坐标系中,先画出△OAB 关于y轴对称的图形,再画出△OAB绕点O旋转180°后得到的图形. 
(2)先阅读后作答:我们已经知道,根据几何图形的面积  关系可以说明完全平方公式,实际上还有一些等式也可以用这种方式加以说明,例如:(2a +b)( a +b) =" 2a2" +3ab +b2,就可以用图22-1的面积关系来说明.

① 根据图22-2写出一个等式    ;
② 已知等式:(x +p)(x +q)="x2" + (p +q) x + pq,请你画出一个相应的几何图形加以说明.

查看答案和解析>>


同步练习册答案