24. 已知:如图,抛物线y=-x2+bx+c与x轴.y轴分别相交于点A两点.其顶点为D. (1) 求该抛物线的解析式, (2) 若该抛物线与x轴的另一个交点为E. 求四边形ABDE的面积, (3) △AOB与△BDE是否相似?如果相似.请予以证明,如果不相似.请说明理由. (注:抛物线y=ax2+bx+c的顶点坐标为) 24.解:( 1)由已知得:解得 c=3,b=2 ∴抛物线的线的解析式为 (2)由顶点坐标公式得顶点坐标为(1.4) 所以对称轴为x=1,A,E关于x=1对称.所以E(3,0) 设对称轴与x轴的交点为F 所以四边形ABDE的面积= = = =9 (3)相似 如图.BD= BE= DE= 所以, 即: ,所以是直角三角形 所以,且, 所以. 查看更多

 

题目列表(包括答案和解析)

(本小题满分12分)
图中的曲线是函数(m为常数)图象的一支.

【小题1】求常数m的取值范围;
【小题2】若该函数的图象与正比例函数图象在第一象限的交点为A(2,n),
求点A的坐标及反比例函数的解析式.

查看答案和解析>>

(本小题满分12分)

已知二次函数图象的顶点坐标为M(1,0),直线与该二次函数的图象交于A,B两点,其中A点的坐标为(3,4),B点在轴上.

1.(1)求m的值及这个二次函数的解析式;

2.(2)若P(,0) 是轴上的一个动点,过P作轴的垂线分别与直线AB和二次函数的图象交于D、E两点.

①当0<< 3时,求线段DE的最大值;

②若直线AB与抛物线的对称轴交点为N,

问是否存在一点P,使以M、N、D、E

为顶点的四边形是平行四边形?若存在,

请求出此时P点的坐标;若不存在,请

说明理由.

 

查看答案和解析>>

(本小题满分12分)
已知二次函数图象的顶点坐标为M(1,0),直线与该二次函数的图象交于A,B两点,其中A点的坐标为(3,4),B点在轴上.

【小题1】(1)求m的值及这个二次函数的解析式;
【小题2】(2)若P(,0) 是轴上的一个动点,过P作轴的垂线分别与直线AB和二次函数的图象交于D、E两点.
①当0<< 3时,求线段DE的最大值;
②若直线AB与抛物线的对称轴交点为N,
问是否存在一点P,使以M、N、D、E
为顶点的四边形是平行四边形?若存在,
请求出此时P点的坐标;若不存在,请
说明理由.

查看答案和解析>>

(本小题满分12分)
如图,在平面直角坐标系xoy中,矩形ABCD的边AB在x轴上,且AB=3,BC=,直线y=经过点C,交y轴于点G。

【小题1】(1)点C、D的坐标分别是C(       ),D(       );
【小题2】(2)求顶点在直线y=上且经过点C、D的抛物
线的解析式;
【小题3】(3)将(2)中的抛物线沿直线y=平移,平移后   
的抛物线交y轴于点F,顶点为点E(顶点在y轴右侧)。
平移后是否存在这样的抛物线,使⊿EFG为等腰三角形?
若存在,请求出此时抛物线的解析式;若不存在,请说
明理由。

查看答案和解析>>

 (本小题满分12分)

如图,在平面直角坐标系xoy中,矩形ABCD的边AB在x轴上,且AB=3,BC=,直线y=经过点C,交y轴于点G。

1.(1)点C、D的坐标分别是C(        ),D(        );

2.(2)求顶点在直线y=上且经过点C、D的抛物

线的解析式;

3.(3)将(2)中的抛物线沿直线y=平移,平移后   

的抛物线交y轴于点F,顶点为点E(顶点在y轴右侧)。

平移后是否存在这样的抛物线,使⊿EFG为等腰三角形?

若存在,请求出此时抛物线的解析式;若不存在,请说

明理由。

 

查看答案和解析>>


同步练习册答案