重点:一次函数的图象和性质 难点:由一次函数的图象归纳得出一次函数的性质及对性质的理解三.教学过程 查看更多

 

题目列表(包括答案和解析)

20、学习和研究《一次函数的图象与性质》时,用到的数学思想方法有
数形结合
分类讨论
化归
(填数形结合、分类讨论、类比、从特殊到一般、化归、函数方程思想等中的3个即可).

查看答案和解析>>

创新与思索
我们学过正比例函数、反比例函数、一次函数和二次函数的图象和性质,现在给出函数y=|x-2|,请解答下列问题:
(1)该函数的图象经过的象限可以为
A
A

A.第一、二象限     B.第一、三象限      C.第三、四象限       D.第二、四象限
(2)该函数的图象是否是轴对称图形?如果是,写出它的对称轴;如果不是,请说明理由.
(3)当y随x的增大而增大时,x满足什么条件?
(4)该函数是否有最大值?如果有,是多少?该函数是否有最小值?如果有,是多少?
(5)若P(t,y1),Q(t+2,y2)是该函数的图象上的两点,试比较y1与y2的大小.(请直接写出符合题意的答案)

查看答案和解析>>

探索研究:
通过对一次函数、反比例函数的学习.我们积累了一定的经验.下面我们借鉴以往研究函效的经验,探索的数y=x+
1
x
(x>0)的图象和性质.
(1)填写下表,画出函数的图象:
x
1
4
1
3
1
2
1 2 3 4
y
(2)观察图象,写出函数两条不同类型的性质:
函数两条不同类型的性质是:当0<x<1时,y 随x的增大而减小,当x>1时,y 随x的增大而增大;
函数两条不同类型的性质是:当0<x<1时,y 随x的增大而减小,当x>1时,y 随x的增大而增大;

当x=1时,函数y=x+
1
x
(x>0)的最小值是2.
当x=1时,函数y=x+
1
x
(x>0)的最小值是2.

知识运用:
一般函数y=x+
a
x
(x>0,a>0)也有类似的结论.请利用上面探究函数性质的方法解决下列问题:
己知一个矩形的面积是4.设矩形的一边长为x.它的周长为y.求y与x的函数关系式,井求出:当x取何值时.矩形的周长最小?最小值是多少?

查看答案和解析>>

15、(1)学习和研究《反比例函数的图象与性质》《一次函数的图象与性质》时,用到的数学思想方法有
数形结合
分类讨论、类比、从特殊到一般、化归、函数方程思想
.(填2个即可)
(2)学数学不仅仅是听课和解题,三年初中数学学习期间,教材中给你留下深刻印象的选学内容、数学活动、课题学习有
阅读与思考、观察与猜想、实验与探究、信息技术应用
数学活动
课题学习
(填3个即可).

查看答案和解析>>

(1)学习和研究《反比例函数的图象与性质》《一次函数的图象与性质》时,用到的数学思想方法有         (填2个即可).

(2)学数学不仅仅是听课和解题,三年初中数学学习期间,教材中给你留下深刻印象的选学内容、数学活动、课题学习有                (填3个即可).

 

查看答案和解析>>


同步练习册答案