证明:(1)连结OD. ························································································· 1分 由O.E分别是BC.AC中点得OE∥AB. ∴∠1=∠2.∠B=∠3.又OB=OD. ∴∠2=∠3. 而OD=OC.OE=OE ∴△OCE≌△ODE. ∴∠OCE=∠ODE. 又∠C=90°.故∠ODE =90°. ································ 2分 ∴DE是⊙O的切线. ·········································· 3分 (2)在Rt△ODE中.由.DE=2 得 ····························································· 5分 又∵O.E分别是CB.CA的中点 ∴AB=2· ∴所求AB的长是5cm. ····················································································· 7分 查看更多

 

题目列表(包括答案和解析)

(本题满分8分)如图1,已知反比例函数y=过点P, P点的坐标为(3-m,
2m),m是分式方程的解,PA⊥x轴于点A,PB⊥y轴于点B.

(1)求m值
(2)试判断四边形PAOB的形状,并说明理由.
(2)如图2,连结AB,E为AB上的一点,EF⊥BP于点F,G为AE的中点,连结OG、FG,试问FG和OG有何数量关系?请写出你的结论并证明.

查看答案和解析>>

(本题满分8分)
如图,E、F分别是平行四边形ABCD对角线BD所在直线上两点,BE=DF,请你以F为一个端点,和图中己标明字母的某一点连成一条新的线段,猜想并证明它和图中已有的某一条线段相等(只需研究一组线段相等即可)

(1)连结_________  
(2)猜想:_________
(3)证明:

查看答案和解析>>

(本题满分10分)如图,⊙O是△ABC的外接圆,FH是⊙O 的切线,切点为F,

FH∥BC,连结AF交BC于E,∠ABC的平分线BD交AF于D,连结BF.

(1)证明:AF平分∠BAC;

(2)证明:BF=FD;

(3)若EF=4,DE=3,求AD的长.

 

 

 

 

查看答案和解析>>

(本题满分12分)如图,抛物线y=ax2+bx+c经过点A(0,4)、B(2,4),它的最高点纵坐标为,点P是第一象限抛物线上一点且PA=PO,过点P的直线分别交射线AB、x正半轴于C、D.设AC=m,OD=n.

【小题1】(1)求此抛物线的解析式;
【小题2】(2)求点P的坐标及n关于m的函数关系式;
【小题3】(3)连结OC交AP于点E,如果以A、C、E为顶点的三角形与△ODP相似,求m的值.

查看答案和解析>>

(本题满分8分)已知矩形ABCD的对角线相交于点O,M 、N分别是OD、OC上异于O、C、D的点。
(1)请你在下列条件①DM=CN,②OM=ON,③MN是△OCD的中位线,④MN∥AB中任选一个添加条件(或添加一个你认为更满意的其他条件),使四边形ABNM为等腰梯形,你添加的条件是               
(2)添加条件后,请证明四边形ABNM是等腰梯形。

查看答案和解析>>


同步练习册答案