已知直角坐标系中菱形ABCD的位置如图.C.D两点的坐标分别为.现有两动点P,Q分别从A,C同时出发.点P沿线段AD向终点D运动.点Q沿折线CBA向终点A运动.设运动时间为t秒. (1)填空:菱形ABCD的边长是 ▲ .面积是 ▲ . 高BE的长是 ▲ , (2)探究下列问题: ①若点P的速度为每秒1个单位.点Q的速度为每秒2个单位.当点Q在线段BA上时.求△APQ的面积S关于t的函数关系式.以及S的最大值, ②若点P的速度为每秒1个单位.点Q的速度变为每秒k 个单位.在运动过程中,任何时刻都有相应的k值.使得 △APQ沿它的一边翻折.翻折前后两个三角形组成的四边 形为菱形.请探究当t=4秒时的情形.并求出k的值. 浙江省2009年初中毕业生学业考试 查看更多

 

题目列表(包括答案和解析)

精英家教网已知直角坐标系中菱形ABCD的位置如图,C,D两点的坐标分别为(4,0),(0,3).现有两动点P,Q分别从A,C同时出发,点P沿线段AD向终点D运动,点Q沿折线CBA向终点A运动,设运动时间为t秒.
(1)填空:菱形ABCD的边长是
 
、面积是
 
、高BE的长是
 

(2)探究下列问题:
①若点P的速度为每秒1个单位,点Q的速度为每秒2个单位.当点Q在线段BA上时,求△APQ的面积S关于t的函数关系式,以及S的最大值;
②若点P的速度为每秒1个单位,点Q的速度变为每秒k个单位,在运动过程中,任何时刻都有相应的k值,使得△APQ沿它的一边翻折,翻折前后两个三角形组成的四边形为菱形.请探究当t=4秒时的情形,并求出k的值.

查看答案和解析>>

已知直角坐标系中菱形ABCD的位置如图,C,D两点的坐标分别为(4,0),(0,3),现有两动点P,Q分别从A,C同时出发,点P沿线段AD向终点D运动,点Q沿折线CBA向终点A运动,设运动时间为t秒。
(1)填空:菱形ABCD的边长是_______、面积是______、 高BE的长是_______;
(2)探究下列问题:
①若点P的速度为每秒1个单位,点Q的速度为每秒2个单位.当点Q在线段BA上时,求△APQ的面积S关于t的函数关系式,以及S的最大值;
②若点P的速度为每秒1个单位,点Q的速度变为每秒k个单位,在运动过程中,任何时刻都有相应的k值,使得△APQ沿它的一边翻折,翻折前后两个三角形组成的四边形为菱形,请探究当t=4秒时的情形,并求出k的值。

查看答案和解析>>

已知直角坐标系中菱形ABCD的位置如图,C,D两点的坐标分别为(4,0),(0,3).现有两动点P,Q分别从A,C同时出发,点P沿线段AD向终点D运动,点Q沿折线CBA向终点A运动,设运动时间为t秒.
(1)填空:菱形ABCD的边长是______、面积是______、高BE的长是______;
(2)探究下列问题:
①若点P的速度为每秒1个单位,点Q的速度为每秒2个单位.当点Q在线段BA上时,求△APQ的面积S关于t的函数关系式,以及S的最大值;
②若点P的速度为每秒1个单位,点Q的速度变为每秒k个单位,在运动过程中,任何时刻都有相应的k值,使得△APQ沿它的一边翻折,翻折前后两个三角形组成的四边形为菱形.请探究当t=4秒时的情形,并求出k的值.

查看答案和解析>>

已知直角坐标系中菱形ABCD的位置如图,C,D两点的坐标分别为(4,0),(0,3).现有两动点P,Q分别从A,C同时出发,点P沿线段AD向终点D运动,点Q沿折线CBA向终点A运动,设运动时间为t秒.
(1)填空:菱形ABCD的边长是______、面积是______、高BE的长是______;
(2)探究下列问题:
①若点P的速度为每秒1个单位,点Q的速度为每秒2个单位.当点Q在线段BA上时,求△APQ的面积S关于t的函数关系式,以及S的最大值;
②若点P的速度为每秒1个单位,点Q的速度变为每秒k个单位,在运动过程中,任何时刻都有相应的k值,使得△APQ沿它的一边翻折,翻折前后两个三角形组成的四边形为菱形.请探究当t=4秒时的情形,并求出k的值.

查看答案和解析>>

已知直角坐标系中菱形ABCD的位置如图,C,D两点的坐标分别为(4,0),(0,3).现有两动点P,Q分别从A,C同时出发,点P沿线段AD向终点D运动,点Q沿折线CBA向终点A运动,设运动时间为t秒.
(1)填空:菱形ABCD的边长是______、面积是______、高BE的长是______;
(2)探究下列问题:
①若点P的速度为每秒1个单位,点Q的速度为每秒2个单位.当点Q在线段BA上时,求△APQ的面积S关于t的函数关系式,以及S的最大值;
②若点P的速度为每秒1个单位,点Q的速度变为每秒k个单位,在运动过程中,任何时刻都有相应的k值,使得△APQ沿它的一边翻折,翻折前后两个三角形组成的四边形为菱形.请探究当t=4秒时的情形,并求出k的值.

查看答案和解析>>


同步练习册答案