如图.四面体中..分别是.的中点. 查看更多

 

题目列表(包括答案和解析)

如图,四面体中,分别是的中点,

(Ⅰ)求证:平面

(Ⅱ)求二面角的正切值;

(Ⅲ)求点到平面的距离.

 

查看答案和解析>>

如图,四面体中,分别是的中点,

(Ⅰ)求证:平面

(Ⅱ)求异面直线所成角余弦值的大小;

(Ⅲ)求点到平面的距离.

 

 

查看答案和解析>>

如图,四面体中,分别是的中点,

(1)求证:平面

(2)求直线与平面所成角的余弦值;

(3)求点到平面的距离。

 

查看答案和解析>>

如图,四面体中,分别是的中点,

(Ⅰ)求证:平面
(Ⅱ)求二面角的正切值;
(Ⅲ)求点到平面的距离.

查看答案和解析>>

如图,四面体中,分别是的中点,

(Ⅰ)求证:平面
(Ⅱ)求异面直线所成角余弦值的大小;
(Ⅲ)求点到平面的距离.

查看答案和解析>>

一、填空题:

1.   2.    3.    4.    5.    6.   7.    8.2009     9.4个     10.①②    11. 

二、选择题:

12.B    13.C    14.D    15.D

三、解答题:

16.解:(Ⅰ)因为点的坐标为,根据三角函数定义可知,  

,                                                          2分

所以                                                4分

(Ⅱ)因为三角形为正三角形,所以,                                                  5分

所以

                                               7分

所以

。                                        11分

17.方法一:(I)证明:连结OC,因为所以

所以,                                    2分

中,由已知可得

所以所以

       所以平面。                                    5分

(II)解:取AC的中点M,连结OM、ME、OE,由E为BC的中点知

所以直线OE与EM所成的锐角就是异面直线AB与CD所成的角,              7分

中,因为是直角斜边AC上的中线,所以所以                          

所以异面直线AB与CD所成角的大小为。                           12分

18.解:(Ⅰ)由年销售量为件,按利润的计算公式,有生产A、B两产品的年利润分别为:

         2分

所以                      5分

(Ⅱ)因为所以为增函数,

,所以时,生产A产品有最大利润为(万美元)                         

,所以时,生产B产品

有最大利润为460(万美元)                                            8分

现在我们研究生产哪种产品年利润最大,为此,我们作差比较:

  10分

所以:当时,投资生产A产品200件可获得最大年利润;

     当时,生产A产品与生产B产品均可获得最大年利润;

     当时,投资生产B产品100件可获得最大年利润。12分

19.解:(1)当时,成立,所以是偶函数;

                                                                         3分

时,,这时所以是非奇非偶函数;                                                           6分

(2)当时,,则

                  9分

时,因为,所以

所以

,所以是区间 的单调递减函数。  14分

20.解:(Ⅰ)由抛物线,设上,且,所以,得,代入,得

所以。                                                      4分

上,由已知椭圆的半焦距,于是

消去并整理得  , 解得不合题意,舍去).

故椭圆的方程为。                                      7分

(另法:因为上,

所以,所以,以下略。)

(Ⅱ)由,所以点O到直线的距离为

,又

所以

。                                      10分

下面视提出问题的质量而定:

如问题一:当面积为时,求直线的方程。()      得2分

问题二:当面积取最大值时,求直线的方程。()       得4分

21.解:(1)

2

3

35

100

97

94

3

1

                                                                         4分

(2)由题意知数列的前34项成首项为100,公差为-3的等差数列,从第35项开始,奇数项均为3,偶数项均为1,                                  6分

从而=                         8分

    =                        10分

(3)证明:①若,则题意成立,                                   12分

②若,此时数列的前若干项满足,即

,则当时,

从而此时命题成立;                                                       14分

③若,由题意得,则由②的结论知此时命题也成立,

综上所述,原命题成立。                                                     16分

 

 

 


同步练习册答案