课本第134页练习. 查看更多

 

题目列表(包括答案和解析)

下列说法:
6
是二次根式,但不是整式;
②方程3x2-
2
x
=0
是一元二次方程;
③若ac<0,则方程ax2+bx+c=0必有两个不相等的实数根;
④数学课本第40页观察与猜想讨论了一元二次方程根与系数的关系,根据这一关系得方程x2-3x+5=0的两根和是3,两根积是5.
其中错误的有(  )

查看答案和解析>>

23、我们曾经证过《几何》第三册第145页练习第2题,即:
已知:如图1,⊙O1与⊙O2相切于点T,直线AB、CD经过点T,交⊙O1于点A、C,交⊙O2与点B、D,
求证:AC∥BD;
若将条件中的“⊙O1与⊙O2相切”变为“⊙O1与⊙O2相交”(如图2所示)其它条件不变,AC∥BD是否还成立,并说明理由.

查看答案和解析>>

在我们刚刚学过的九年级数学下册课本第11页,用“描点法”画某个二次函数图象时,列了如下表格:
x 3 4 5 6 7 8
y 7.5 5 3.5 3 3.5 5
根据表格上的信息回答问题:该二次函数在x=9时,y=
7.5
7.5

查看答案和解析>>

下列说法:
6
是二次根式,但不是整式;
②方程x2-x-k=0的根为x1,2=
1+4k
2

③若ac<0,则方程ax2+bx+c=0方程必有实数根;
④课本第54页观察与猜想讨论了一元二次方程根与系数的关系,根据这一关系得方程x2-3x+5=0的两根和是3,两根积是5.
其中错误的有(  )

查看答案和解析>>

数形结合作为一种数学思想方法,数形结合的应用大致又可分为两种情形:或者借助于数的精确性来阐明形的某些属性,即“以数解形”;或者借助形的几何直观性来阐明数之间的某种关系,即“以形助数”.
如浙教版九上课本第109页作业题第2题:如图1,已知在△ABC中,∠ACB=90°,CD⊥AB,D为垂足.易证得两个结论:(1)AC•BC=AB•CD   (2)AC2=AD•AB
(1)请你用数形结合的“以数解形”思想来解:如图2,已知在△ABC中(AC>BC),∠ACB=90°,CD⊥AB,D为垂足,CM平分∠ACB,且BC、AC是方程x2-14x+48=0的两个根,求AD、MD的长.
(2)请你用数形结合的“以形助数”思想来解:设a、b、c、d都是正数,满足a:b=c:d,且a最大.求证:a+d>b+c(提示:不访设AB=a,CD=d,AC=b,BC=c,构造图1)
精英家教网

查看答案和解析>>


同步练习册答案