仔细阅读并完成下题:
我们把一个半圆与抛物线的一部分合成的封闭图形称为“蛋圆”;如果一条直线与“蛋圆”只有一个交点,那么这条直线叫做“蛋圆”的切线.如图,已知“蛋圆”是由抛物线y=ax
2-2ax+c的一部分和圆心为M的半圆合成的.点A、B、C分别是“蛋圆”与坐标轴的交点,已知点A的坐标为(-1,0),AB为半圆的直径,
(1)点B的坐标为(
3
3
,
0
0
);点C的坐标为(
0
0
,
),半圆M的半径为
2
2
;
(2)若P是“蛋圆”上的一点,且以O、P、B为顶点的三角形是等腰直角三角形求符合条件的点P的坐标,以及所对应的a的值;
(3)已知直线
y=x-是“蛋圆”的切线,求满足条件的抛物线解析式.