通过四边形从属关系的教学.渗透集合思想. 情感态度与价值观 查看更多

 

题目列表(包括答案和解析)

我国著名数学家华罗庚曾说过:“数缺形时少直观,形少数时难入微;数形结合百般好,隔离分家万事休”.数学中,数和形是两个最主要的研究对象,它们之间有着十分密切的联系,在一定条件下,数和形之间可以相互转化,相互渗透.
数形结合的基本思想,就是在研究问题的过程中,注意把数和形结合起来考察,斟酌问题的具体情形,把图形性质的问题转化为数量关系的问题,或者把数量关系的问题转化为图形性质的问题,使复杂问题简单化,抽象问题具体化,化难为易,获得简便易行的成功方案.
例如:求1+2+3+4+…+n的值,其中n是正整数.
对于这个求和问题,如果采用纯代数的方法(首尾两头加),问题虽然可以解决,但在求和过程中,需对n的奇偶性进行讨论.
如果采用数形结合的方法,即用图形的性质来说明数量关系的事实,那就非常的直观.现利用图形的性质来求1+2+3+4+…+n的值,方案如下:如图,斜线左边的三角形图案是由上到下每层依次分别为1,2,3,…,n个小圆圈排列组成的.而组成整个三角形小圆圈的个数恰为所求式子1+2+3+4+…+n的值.为求式子的值,现把左边三角形倒放于斜线右边,与原三角形组成一个平行四边形.此时,组成平行四边形的小圆圈共有n行,每行有(n+1)个小圆圈,所以组成平行四边形小圆圈的总个数为n(n+1)个,因此,组成一个三角形小圆圈的个数为
n(n+1)
2
,即1+2+3+4+…+n=
n(n+1)
2

(1)仿照上述数形结合的思想方法,设计相关图形,求1+3+5+7+…+(2n-1)的值,其中n是正整数.(要求:画出图形,并利用图形做必要的推理说明)
(2)试设计另外一种图形,求1+3+5+7+…+(2n-1)的值,其中n是正整数.(要求:画出图形,精英家教网并利用图形做必要的推理说明)

查看答案和解析>>

图中字母表示为四边形、平行四边形,矩形、菱形、正方形的从属关系,则字母所代表的图形为:
正方形为
D
D
,菱形为
C
C
,矩形为
E
E
,平行四边形为
B
B
,四边形为
A
A

查看答案和解析>>

精英家教网图中字母表示为四边形、平行四边形,矩形、菱形、正方形、梯形、等腰梯形、直角梯形从属关系,则字母所代表的图形为:
A为
 
,B为
 
,C为
 

D为
 
,E为
 
,F为
 

G为
 
,H为
 

查看答案和解析>>

如图,直角三角形ABC中,∠ABC=90°,B(2,0),经过A、B、C三点的抛物线y=
14
x2-2x+k与y轴交于点A,与x轴的另一个交点为D.
(1)求此抛物线的解析式;
(2)⊙B是以点B为圆心,OB长为半径的圆,以点D为圆心的⊙D与直线BC相切,请你通过计算说明:⊙B与⊙D的位置关系;
(3)在直线AD下方的抛物线上是否存在一点P,使四边形APDC的面积最大?若存在,请你求出点P的坐标和四边形APDC面积的最大值;若不存在,请你说明理由.

查看答案和解析>>

如图,直角三角形ABC中,∠ABC=90°,B(2,0),经过A、B、C三点的抛物线y=x2-2x+k与y轴交于点A,与x轴的另一个交点为D.
(1)求此抛物线的解析式;
(2)⊙B是以点B为圆心,OB长为半径的圆,以点D为圆心的⊙D与直线BC相切,请你通过计算说明:⊙B与⊙D的位置关系;
(3)在直线AD下方的抛物线上是否存在一点P,使四边形APDC的面积最大?若存在,请你求出点P的坐标和四边形APDC面积的最大值;若不存在,请你说明理由.

查看答案和解析>>


同步练习册答案