例3.我们知道x2-.那么x2-(a+b)x+ab=0就可转化为=0.请你用上面的方法解下列方程. (1)x2-3x-4=0 (2)x2-7x+6=0 (3)x2+4x-5=0 分析:二次三项式x2-(a+b)x+ab的最大特点是x2项是由x·x而成.常数项ab是由-a·(-b)而成的.而一次项是由-a·x+交叉相乘而成的.根据上面的分析.我们可以对上面的三题分解因式. 解(1)∵x2-3x-4= ∴=0 ∴x-4=0或x+1=0 ∴x1=4.x2=-1 (2)∵x2-7x+6= ∴=0 ∴x-6=0或x-1=0 ∴x1=6.x2=1 (3)∵x2+4x-5= ∴=0 ∴x+5=0或x-1=0 ∴x1=-5.x2=1 上面这种方法.我们把它称为十字相乘法. 查看更多

 

题目列表(包括答案和解析)

【提出问题】
如图①,在梯形ABCD中,AD//BC,AC、BD交于点E,∠BEC=n°,若AD=a,BC=b,则梯形ABCD的面积最大是多少?
【探究过程】
小明提出:可以从特殊情况开始探究,如图②,在梯形ABCD中,AD//BC,AC⊥BD,若AD=3,BC=7,则梯形ABCD的面积最大是多少?
如图③,过点D做DE//AC交BC的延长线于点E,那么梯形ABCD的面积就等于△DBE的面积,求梯形ABCD的面积最大值就是求△DBE的面积最大值.如果设AC=x,BD=y,那么S△DBE=xy.
以下是几位同学的对话:
A同学:因为y=,所以S△DBE=x,求这个函数的最大值即可.
B同学:我们知道x2+y2=100,借助完全平方公式可求S△DBE=xy的最大值
C同学:△DBE是直角三角形,底BE=10,只要高最大,S△DBE就最大,我们先将所有满足BE=10的直角△DBE都找出来,然后在其中寻找高最大的△DBE即可.

(1)请选择A同学或者B同学的方法,完成解题过程.
(2)请帮C同学在图③中画出所有满足条件的点D,并标出使△DBE面积最大的点D1.(保留作图痕迹,可适当说明画图过程)
【解决问题】
根据对特殊情况的探究经验,请在图①中画出面积最大的梯形ABCD的顶点D1,并直接写出梯形ABCD面积的最大值.

查看答案和解析>>

【提出问题】

如图①,在梯形ABCD中,AD//BC,AC、BD交于点E,∠BEC=n°,若AD=a,BC=b,则梯形ABCD的面积最大是多少?

【探究过程】

小明提出:可以从特殊情况开始探究,如图②,在梯形ABCD中,AD//BC,AC⊥BD,若AD=3,BC=7,则梯形ABCD的面积最大是多少?

如图③,过点D做DE//AC交BC的延长线于点E,那么梯形ABCD的面积就等于△DBE的面积,求梯形ABCD的面积最大值就是求△DBE的面积最大值.如果设AC=x,BD=y,那么S△DBE=xy.

以下是几位同学的对话:

A同学:因为y=,所以S△DBE=x,求这个函数的最大值即可.

B同学:我们知道x2+y2=100,借助完全平方公式可求S△DBE=xy的最大值

C同学:△DBE是直角三角形,底BE=10,只要高最大,S△DBE就最大,我们先将所有满足BE=10的直角△DBE都找出来,然后在其中寻找高最大的△DBE即可.

(1)请选择A同学或者B同学的方法,完成解题过程.

(2)请帮C同学在图③中画出所有满足条件的点D,并标出使△DBE面积最大的点D1.(保留作图痕迹,可适当说明画图过程)

【解决问题】

根据对特殊情况的探究经验,请在图①中画出面积最大的梯形ABCD的顶点D1,并直接写出梯形ABCD面积的最大值.

 

查看答案和解析>>

我们知道x2-(a+b)x+ab=(x-a)(x-b),那么x2-(a+b)x+ab=0就可转化为(x-a)(x-b)=0请你用上面的方法解下列方程:
(1)x2-3x-4=0;
(2)x2-7x+6=0;
(3)x2+4x-5=0。

查看答案和解析>>

阅读以下内容,并解决所提出的问题:
(1)我们知道:23=2×2×2;25=2×2×2×2×2;所以23×25=(2×2×2)×(2×2×2×2×2)=28
(2)用与(1)相同的方法可计算得53×54=5( 7 );a3•a4=a( 7 )
(3)归纳以上的学习过程,可猜测结论:am•an=
am+n
am+n

(4)利用以上的结论计算以下各题:①102004×102005=
104009
104009
;    ②x2•x3•x4=
x9
x9

查看答案和解析>>

小明在做作业时,不慎将墨水滴在一个三项式上,将前后两项污染得看不清楚了,但中间项是12xy,为了便于填上后面的空,请你帮他把前后两项补充完整,使它成为完全平方式,你有几种方法?(至少写出三种不同的方法)
三项式:■+12xy+■=
(  )
(  )
2
(1)
4x2+12xy+9y2=(2x+3y)2
4x2+12xy+9y2=(2x+3y)2
;(2)
9x2+12xy+4y2=(3x+2y)2
9x2+12xy+4y2=(3x+2y)2
;(3)
9x2+12xy+4y2=(-3x-2y)2
9x2+12xy+4y2=(-3x-2y)2

我们知道因式分解与整式乘法是互逆的关系,那么逆用乘法公式(x+a)(x+b)=x2+(a+b)x+ab,即x2+(a+b)x+ab=(x+a)(x+b)是否可以分解因式呢?当然可以,而且也很简单.
如:
(1)x2+5x+6=x2+(3+2)x+3×2=(x+2)(x+3);
(2)x2-5x-6=x2+(-6+1)x+(-6)×1=(x-6)(x+1).
请你仿照上述方法,把下列多项式分解因式:
(1)x2-8x+7;
(2)x2+7x-18.

查看答案和解析>>


同步练习册答案