通过本节的学习.引导学生体验几何美.提高学习兴趣. 查看更多

 

题目列表(包括答案和解析)

通过本节课的学习,你有什么收获?

查看答案和解析>>

通过本节课的学习,你有什么收获?

查看答案和解析>>

通过本节课的学习,你有什么收获?

查看答案和解析>>

本节我们学习了定理:“直角三角形斜边上的中线等于斜边的一半。”即:
如图①所示,在Rt △ABC中,∠ACB=90°,若CD 是斜边AB上的中线,则有CD=AB。证明这个定理的方法有多种,教材是利用矩形的性质进行证明的,其实还可利用三角形的中位线定理来证明,请你根据图中已添的辅助线证明此定理。
(1)方法(一):如图②所示,延长BC至E,使CE=BC,连结AE;
(2 )方法(二):如图③所示,取BC的中点E,连结DE。

查看答案和解析>>

31、问题1:同学们已经体会到灵活运用乘法公式给整式乘法及多项式的因式分解带来的方便,快捷.相信通过下面材料的学习、探究,会使你大开眼界,并获得成功的喜悦.
例:用简便方法计算195×205.
解:195×205
=(200-5)(200+5)①
=2002-52
=39975
(1)例题求解过程中,第②步变形是利用
平方差公式
(填乘法公式的名称);
(2)用简便方法计算:9×11×101×10001.
问题2:对于形如x2+2ax+a2这样的二次三项式,可以用公式法将它分解成(x+a)2的形式.但对于二次三项式x2+2ax-3a2,就不能直接运用公式了.此时,我们可以在二次三项式x2+2ax-3a2中先加上一项a2,使它与x2+2ax的和成为一个完全平方式,再减去a2,整个式子的值不变,于是有:
x2+2ax-3a2=(x2+2ax+a2)-a2-3a2
=(x+a)2-(2a)2
=(x+3a)(x-a).
像这样,先添一适当项,使式中出现完全平方式,再减去这个项,使整个式子的值不变的方法称为“配方法”.
(1)利用“配方法”分解因式:a2-4a-12.
问题3:若x-y=5,xy=3,求:①x2+y2;②x4+y4的值.

查看答案和解析>>


同步练习册答案