⒈重点:能根据题意把实际问题转化为数学问题来解决. ⒉难点:要注意检验方程解是否符合题意. 查看更多

 

题目列表(包括答案和解析)

精英家教网如图所示,在△ABC中,∠B=90°,AB=6厘米,BC=3厘米,点P从点A开始沿AB边向B以2厘米/秒的速度移动,点Q从点B开始沿BC边向点C以1厘米/秒的速度移动,如果P、Q分别从A、B同时出发,几秒钟后P、Q间的距离等于2
5
厘米?(把实际问题转化为几何问题)

查看答案和解析>>

如图所示,在△ABC中,∠B=90°,AB=6厘米,BC=3厘米,点P从点A开始沿AB边向B以2厘米/秒的速度移动,点Q从点B开始沿BC边向点C以1厘米/秒的速度移动,如果P、Q分别从A、B同时出发,几秒钟后P、Q间的距离等于2厘米?(把实际问题转化为几何问题)

查看答案和解析>>

如图所示,在△ABC中,∠B=90°,AB=6厘米,BC=3厘米,点P从点A开始沿AB边向B以2厘米/秒的速度移动,点Q从点B开始沿BC边向点C以1厘米/秒的速度移动,如果P、Q分别从A、B同时出发,几秒钟后P、Q间的距离等于2数学公式厘米?(把实际问题转化为几何问题)

查看答案和解析>>

甲、乙两辆车在一条公路上匀速行驶,为了确定汽车的位置.我们用Ox表示这条公路,原点O为零千米路标,并作如下约定:速度为正,表示汽车向数轴的正方向行驶;速度为负,表示汽车向数轴的负方向行驶;速度为零,表示汽车静止.行程为正,表示汽车位于零千米的右侧;行程为负,表示汽车位于零千米的左侧:行程为零,表示汽车位于零千米处.
时间(h) 0 3 5 x
甲车位置(km) -20 130
230
230
50x-20
50x-20
乙车位置(km)
340
340
220 140
340-40x
340-40x
(1)根据题意把表格填完整.
(2)甲、乙两车能否相遇?如果相遇,求相遇时的时刻及在公路上的位置;如果不能相遇,请说明理由;
(3)甲、乙汽车能否相距135km?如果能,求相距135km的时刻及其位置;如不能,请说明理由.

查看答案和解析>>

17、实际问题:某学校共有18个教学班,每班的学生数都是40人.为了解学生课余时间上网情况,学校打算做一次抽样调查,如果要确保全校抽取出来的学生中至少有10人在同一班级,那么全校最少需抽取多少名学生?
建立模型:为解决上面的“实际问题”,我们先建立并研究下面从口袋中摸球的数学模型:
在不透明的口袋中装有红,黄,白三种颜色的小球各20个(除颜色外完全相同),现要确保从口袋中随机摸出的小球至少有10个是同色的,则最少需摸出多少个小球?
为了找到解决问题的办法,我们可把上述问题简单化:
(1)我们首先考虑最简单的情况:即要确保从口袋中摸出的小球至少有2个是同色的,则最少需摸出多少个小球?
假若从袋中随机摸出3个小球,它们的颜色可能会出现多种情况,其中最不利的情况就是它们的颜色各不相同,那么只需再从袋中摸出1个小球就可确保至少有2个小球同色,即最少需摸出小球的个数是:1+3=4(如图①);
(2)若要确保从口袋中摸出的小球至少有3个是同色的呢?
我们只需在(1)的基础上,再从袋中摸出3个小球,就可确保至少有3个小球同色,即最少需摸出小球的个数是:1+3×2=7(如图②)
(3)若要确保从口袋中摸出的小球至少有4个是同色的呢?
我们只需在(2)的基础上,再从袋中摸出3个小球,就可确保至少有4个小球同色,即最少需摸出小球的个数是:1+3×3=10(如图③):…
(10)若要确保从口袋中摸出的小球至少有10个是同色的呢?
我们只需在(9)的基础上,再从袋中摸出3个小球,就可确保至少有10个小球同色,即最少需摸出小球的个数是:1+3×(10-1)=28(如图⑩)

模型拓展一:在不透明的口袋中装有红,黄,白,蓝,绿五种颜色的小球各20个(除颜色外完全相同),现从袋中随机摸球:
(1)若要确保摸出的小球至少有2个同色,则最少需摸出小球的个数是
6

(2)若要确保摸出的小球至少有10个同色,则最少需摸出小球的个数是
46

(3)若要确保摸出的小球至少有n个同色(n<20),则最少需摸出小球的个数是
1+5(n-1)

模型拓展二:在不透明口袋中装有m种颜色的小球各20个(除颜色外完全相同),现从袋中随机摸球:
(1)若要确保摸出的小球至少有2个同色,则最少需摸出小球的个数是
1+m

(2)若要确保摸出的小球至少有n个同色(n<20),则最少需摸出小球的个数是
1+m(n-1)

问题解决:(1)请把本题中的“实际问题”转化为一个从口袋中摸球的数学模型;
(2)根据(1)中建立的数学模型,求出全校最少需抽取多少名学生?

查看答案和解析>>


同步练习册答案