2.探究圆周角定理及其证明. 查看更多

 

题目列表(包括答案和解析)

请阅读下题及其证明过程,并回答所提出的问题,如下图所示,已知P为⊙O外一点,PA、PB为⊙O的切线,A和B是切点,BC为直径,求证:AC∥OP。
证明:连AB,交OP于点D,连OA
∵PA、PB切⊙O于AB
∴OA⊥PA,OB⊥PB
又∵OA=OB,OP=OP
∴△OAP≌△OBP
∴∠3=90°
_______
∴∠4=90°
∴∠3=∠4
∴AC∥OP。
(1)在横线上补上应填的条件;
(2)上述证明过程中用到的定理具体内容是(只要求写出两个)。

查看答案和解析>>

请阅读下列及其证明过程,并回答所提出的问题,
如图,已知P为⊙O外一点,PA、PB为⊙O的切线,A和B是切点,BC是直径。求证:AC∥OP。
证明:连接AB,交OP于点D,
∵PA、PB切⊙O于A、B,
∴PA=PB,∠1=∠2;
∴PD⊥AB,
∴∠3=90°;
∵________,(*)
∴∠4=90°,
∴∠3=∠4,
∴AC∥OP,
(1)在(*)处的横线上补上应填的条件;
(2)上述证明过程中用到的定理名称或定理的具体内容是(只要求写出两个)。

查看答案和解析>>

阅读下列证明过程: 如图,A、B、C、D是⊙O上的四个点,顺次连接AB、BC、CD、DA,得到一个四边形ABCD (此四边形称为⊙O的内接四边形),则∠A +∠C=∠B+∠D =180°。
证明:分别连接OB、OD,由圆周角定理,得



同理可证∠B+∠D=180°
回答下列问题:

(1)请用数学语言概括上面得到的结论:______;
(2)若延长BC到点E,则∠DCE是四边形ABCD的一个外角,∠BAD 是它的内对角,∠DCE与∠A的大小关系是____,请用数学语言概括并证明这个结论。

查看答案和解析>>

如图,已知矩形ABCD和点P,当点P在边BC上任一位置(如图①所示)时,易证得结论:PA2+PC2=PB2+PD2
以下请你探究:当P点分别在图②、图③中的位置时,即P在矩形ABCD的内部和外部时,线段PA2,PB2,PC2,PD2又有怎样的数量关系?请你写出对上述两种情况的探究结论,并证明图②(P在矩形ABCD的内部)的结论.

答:对图②的探究结论为
PA2+PC2=PB2+PD2
PA2+PC2=PB2+PD2
,对图③的探究结论为
PA2+PC2=PB2+PD2
PA2+PC2=PB2+PD2

查看答案和解析>>

垂径定理及其推论:
定理:垂直于弦的直径
平分弦,并且平分弦所对的两条弧
平分弦,并且平分弦所对的两条弧

推论:
(1)平分弦(不是直径)的直径
垂直于弦,并且平分弦所对的两条弧
垂直于弦,并且平分弦所对的两条弧

(2)弦的垂直垂直平分线经过圆心,并且
平分弦所对的两条弧
平分弦所对的两条弧

(3)平分弦所对的一条弧的直径,垂直平分弦,并且
平分弦所对的另一条弧
平分弦所对的另一条弧

查看答案和解析>>


同步练习册答案