题目列表(包括答案和解析)
阅读下面的问题,并解答题(1)和题(2)。 | ||
(1)如图②,P是边长为2的正方形ABCD边CD上任意一点,且PE⊥DB于E,PF⊥CA于F,求PE+PF的值。 | ||
(2)如图③,在△ABC中,∠A=90°,D是AB上一点,且BD=CD,过BC上任一点P做PE⊥AB于E,PF⊥DC于F,已知AD:BD=1:3,BC= 4,求PE+PF的值。 | ||
【答案】14。
【考点】轴对称-最短路线问题;勾股定理;垂径定理.
【专题】探究型.
【分析】先由MN=20求出⊙O的半径,再连接OA、OB,由勾股定理得出OD、OC的长,作点B关于MN的对称点B′,连接AB′,则AB′即为PA+PB的最小值,B′D=BD=6,过点B′作AC的垂线,交AC的延长线于点E,在Rt△AB′E中利用勾股定理即可求出AB′的值.
【解答】∵MN=20,
∴⊙O的半径=10,
连接OA、OB,
在Rt△OBD中,OB=10,BD=6,
∴OD===8;
同理,在Rt△AOC中,OA=10,AC=8,
∴OC===6,
∴CD=8+6=14,
作点B关于MN的对称点B′,连接AB′,则AB′即为PA+PB的最小值,B′D=BD=6,过点B′作AC的垂线,交AC的延长线于点E,
在Rt△AB′E中,
∵AE=AC+CE=8+6=14,B′E=CD=14,
∴AB′===14.
故答案为:14.
【点评】本题考查的是轴对称-最短路线问题、垂径定理及勾股定理,根据题意作出辅助线,构造出直角三角形,利用勾股定理求解是解答此题的关键.
已知AB、AC为⊙O的两条弦
(1)用直尺(没有刻度)和圆规作出弧BC的中点D;(2)连接OD,则OD∥AC吗?若成立,请证明;若不成立,请添加一个适当的条件,使之成立,再证明.
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com