如图7所示,△ABC是不等边三角形,DE=BC,分别以D.E为两个顶点作位置不同的三角形,使所作三角形与△ABC全等,这样的三角形最多可以画出( ) A.8个 B.6个 C.4个 D.2个 查看更多

 

题目列表(包括答案和解析)

如图所示,在Rt△ABC中,∠A=90°,AB=6、AC=8,D、E分别是边AB、AC的中点,点P从点D出发沿DE方向运动,过点P作PQ⊥BC于Q,过点Q作QR∥BA交AC于R,当点Q与点C重合时,点P停止运动,设BQ=x,QR=y。
(1)若B、K两点的坐标分别为(0,0)、(5,5),C点在x轴的正半轴上,求经过K、B、C三点的抛物线解析式;
(2)求点D到BC的距离DH的长;
(3)求y关于x的函数关系式(不要求写出自变量的取值范围);
(4)是否存在点P,使△PQR为等腰三角形?若存在,请求出所有满足要求的x的值;若不存在,请说明理由。

查看答案和解析>>

如图所示,在△ABC中,∠C=90°,AC=BC=4,D是AB的中点,点E、F分别在AC、BC边上运动(点E不与点A,C重合),且保持AE=CF,连接DE,DF,EF.在此运动变化过程中,有下列结论:
①△DEF是等腰直角三角形
②四边形CEDF不可能为正方形
③四边形CEDF的面积随点E位置的改变而发生变化
④点C到线段EF的最大距离为数学公式
其中正确的有________(填上你认为正确结论的所有序号)

查看答案和解析>>

如图所示,在等腰Rt△ABC中,∠C=90°,AC=8,F是AB边上的中点,点D、E分别在AC、BC边上运动,且保持AD=CE。连结DE、DF、EF。在此运动变化的过程中,下列结论:
①△DFE是等腰直角三角形;②四边形CDFE不可能为正方形;
③DE长度的最小值为4;④四边形CDFE 的面积保持不变;⑤△CDE面积的最大值为8。
其中正确的结论是
[     ]
A.①②③
B.①④⑤
C.①③④
D.③④⑤

查看答案和解析>>

△ABC是一块等边三角形的废铁片,利用其剪裁一个正方形DEFG,使正方形的一条边DE落在BC上,顶点F、G分别落在AC、AB上.
Ⅰ、证明:△BDG≌△CEF;
Ⅱ、探究:怎样在铁片上准确地画出正方形.
小聪和小明各给出了一种想法,请你在Ⅱa和Ⅱb的两个问题中选择一个你喜欢的问题解答.如果两题都解,只以Ⅱa的解答记分.
Ⅱa、小聪想:要画出正方形DEFG,只要能计算出正方形的边长就能求出BD和CE的长,从而确定D点和E点,再画正方形DEFG就容易了.
设△ABC的边长为2,请你帮小聪求出正方形的边长.(结果用含根号的式子表示,不要求分母有理化)
Ⅱb、小明想:不求正方形的边长也能画出正方形.具体作法是:
①在AB边上任取一点G′,如图作正方形G′D′E′F′;
②连接BF′并延长交AC于F;
③作FE∥F′E′交BC于E,FG∥F′G′交AB于G,GD∥G′D′交BC于D,则四精英家教网边形DEFG即为所求.
你认为小明的作法正确吗?说明理由.

查看答案和解析>>

已知等腰三角形ABC中,∠ACB=90°,点E在AC边的延长线上,且∠DEC=45°,点M、N分别是DE、AE的中点,连接MN交直线BE于点F.当点D在CB边上时,如图1所示,易证MF+FN=BE

(1)当点D在CB边上时,如图2所示,上述结论是否成立?若成立,请给与证明;若不成立,请写出你的猜想,并说明理由.

(2)当点D在BC边的延长线上时,如图3所示,请直接写出你的结论.(不需要证明)

 

查看答案和解析>>


同步练习册答案