如图8所示,OA平分∠BAC,∠B=∠C,则图形全等三角形共有 对,它们分别是 . 查看更多

 

题目列表(包括答案和解析)

点A是直线CE上一点,∠MAD是一个可以绕点A任意旋转的60°角.
(1)如图1所示,若∠BAC=90°,AM的反向延长线AN平分∠BAE,求∠EAD的度数是多少?
(2)如图2所示,若∠BAC=m°,(1)中其余条件不变,则∠EAD的度数是
 
;(直接写出答案)
精英家教网
(3)如图3,若∠BAC=m°,将(1)中的“AN平分∠BAE”改为“∠NAB=90°”,则∠EAD的度数是
 
;(直接写出答案)
(4)在图4画出同样满足(3)的条件但不同于图3的图形,并求∠EAD的度数.

查看答案和解析>>

点A是直线CE上一点,∠MAD是一个可以绕点A任意旋转的60°角.
(1)如图1所示,若∠BAC=90°,AM的反向延长线AN平分∠BAE,求∠EAD的度数是多少?
(2)如图2所示,若∠BAC=m°,(1)中其余条件不变,则∠EAD的度数是______;(直接写出答案)

(3)如图3,若∠BAC=m°,将(1)中的“AN平分∠BAE”改为“∠NAB=90°”,则∠EAD的度数是______;(直接写出答案)
(4)在图4画出同样满足(3)的条件但不同于图3的图形,并求∠EAD的度数.

查看答案和解析>>

如图,已知OA平分∠BAC,∠1=∠2,求证:△AOB≌△AOC.

查看答案和解析>>

作业宝如图,已知OA平分∠BAC,∠1=∠2,求证:△AOB≌△AOC.

查看答案和解析>>

如图1所示,等边△ABC中,AD是BC边上的中线,根据等腰三角形的“三线合一”特性,AD平分∠BAC,且AD⊥BC,则有∠BAD=30°,BD=CD=
1
2
AB
.于是可得出结论“直角三角形中,30°角所对的直角边等于斜边的一半”.

请根据从上面材料中所得到的信息解答下列问题:
(1)△ABC中,若∠A:∠B:∠C=1:2:3,AB=a,则BC=
a
2
a
2

(2)如图2所示,在△ABC中,∠ACB=90°,BC的垂直平分线交AB于点D,垂足为E,当BD=5cm,∠B=30°时,△ACD的周长=
15cm
15cm

(3)如图3所示,在△ABC中,AB=AC,∠A=120°,D是BC的中点,DE⊥AB,垂足为E,那么BE:EA=
3:1
3:1

(4)如图4所示,在等边△ABC中,D、E分别是BC、AC上的点,且∠CAD=∠ABE,AD、BE交于点P,作BQ⊥AD于Q,猜想PB与PQ的数量关系,并说明理由.

查看答案和解析>>


同步练习册答案