如图所示,已知△ACB.△FCD都是等腰直角三角形,且C在AD上,AF 的延长线与BD交于E,请你在图中找出一对全等三角形,并写出证明它们全等的过程. 查看更多

 

题目列表(包括答案和解析)

如图1,已知△ABC与△DCE都是等腰直角三角形,AC=BC,DC=EC,∠ACB=∠DCE=90°,点D在AC上,直线BD交AE于点F.
(1)请补充完整证明“BD=AE,BF⊥AE”的推理过程;
证明:在△ACE与△BCD中
∵(
AC=BC,∠DCB=∠ECA,DC=EC
AC=BC,∠DCB=∠ECA,DC=EC

∴△ACE≌△BCD(SAS)
∴BD=AE,∠CAE=∠CBD(全等三角形的对应角相等)
∵∠ACE=90°
∴∠CAE+∠AEC=90°(
直角三角形的两锐角互余
直角三角形的两锐角互余

∴∠CBD+∠AEC=90°(等量代换)
∠BFE=90°
∠BFE=90°

∴BF⊥AE(垂直的定义)
(2)将△DCE绕着点C旋转,在旋转过程中保持△DCE的大小与形状均不变,那么,当△DCE旋转至图2的位置时,(1)中的结论是否仍然成立?为什么?

查看答案和解析>>

如图1,已知△ABC与△DCE都是等腰直角三角形,AC=BC,DC=EC,∠ACB=∠DCE=90°,点D在AC上,直线BD交AE于点F.
(1)请补充完整证明“BD=AE,BF⊥AE”的推理过程;
证明:在△ACE与△BCD中
∵(________)
∴△ACE≌△BCD(SAS)
∴BD=AE,∠CAE=∠CBD(全等三角形的对应角相等)
∵∠ACE=90°
∴∠CAE+∠AEC=90°(________)
∴∠CBD+∠AEC=90°(等量代换)
∴________
∴BF⊥AE(垂直的定义)
(2)将△DCE绕着点C旋转,在旋转过程中保持△DCE的大小与形状均不变,那么,当△DCE旋转至图2的位置时,(1)中的结论是否仍然成立?为什么?

查看答案和解析>>

一张等腰直角三角形彩色纸如图放置,已知AC=BC=cm,∠ACB=90°现要沿AB边向上依次截取宽度均为2cm的长方形纸条,如图所示.已知截得的长方形纸片中有一块是正方形,则这块正方形纸片是(     )
A.第五块B.第六块


C.第七块D.第八块

查看答案和解析>>

一张等腰直角三角形彩色纸如图放置,已知AC=BC=cm,∠ACB=90°现要沿AB边向上依次截取宽度均为2cm的长方形纸条,如图所示.已知截得的长方形纸片中有一块是正方形,则这块正方形纸片是(     )

A.第五块B.第六块


C.第七块D.第八块

查看答案和解析>>

如图所示已知∠AOB=90°,∠BOC=30°,OM平分∠AOC,ON平分∠BOC;
(1)∠MON=
45
45
°;
(2)∠AOB=α,∠BOC=β,求∠MON的度数;并从你的求解你能看出什么什么规律吗?

查看答案和解析>>


同步练习册答案