10.已知⊙O1和⊙O2的半径都等于1.则下列命题参考的有 . (1)若O1O2=1.则⊙O1和⊙O2有两个公共点. (2)若O1O2=2.则两圆外切. (3)若O1O2≤3.则⊙O1和⊙O2必有公共点. (4)若O1O2>1.则两圆不会相切. [考点扫描]考查圆和圆的位置关系的判定. [分析点评]本题要明确圆和圆的五种位置关系中圆心距与两圆半径之间的 关系.设两圆半径分别为R和r,圆心距为d, 由题意得.R+r=2 R-r=0故中d≤3不能确定d与R+r 和R-r大小.例如当d=0时.两圆重合必有公共点.当d=3时两圆外离.无公共点.(4)中当d=2时两圆外切. [参考答案]. 查看更多

 

题目列表(包括答案和解析)

已知⊙O1和⊙O2的半径都等于1,O1O2=5,在线段O1O2的延长线上取一点O3,使O2O3=3,以O3为圆心,R=5为半径作圆.
精英家教网
(1)如图1,⊙O3与线段O1O2相交于点P1,过点P1分别作⊙O1和⊙O2的切线P1A1、P1B1(A1、B1为切点),连接O1A1、O2B1,求P1A1:P1B1的值;
(2)如图2,若过O2作O2P2⊥O1O2交O3于点P2,又过点P2分别作⊙O1和⊙O2的切线P2A2、P2B2(A2、B2为切点),求P2A2:P2B2的值;
(3)设在⊙O3上任取一点P,过点P分别作⊙O1和⊙O2的切线PA、PB(A、B为切点),由(1)(2)的探究,请提出一个正确命题.(不要求证明)

查看答案和解析>>

已知⊙O1和⊙O2的半径都等于1,O1O2=5,在线段O1O2的延长线上取一点O3,使O2O3=3,以O3为圆心,R=5为半径作圆.

(1)如图1,⊙O3与线段O1O2相交于点P1,过点P1分别作⊙O1和⊙O2的切线P1A1、P1B1(A1、B1为切点),连接O1A1、O2B1,求P1A1:P1B1的值;
(2)如图2,若过O2作O2P2⊥O1O2交O3于点P2,又过点P2分别作⊙O1和⊙O2的切线P2A2、P2B2(A2、B2为切点),求P2A2:P2B2的值;
(3)设在⊙O3上任取一点P,过点P分别作⊙O1和⊙O2的切线PA、PB(A、B为切点),由(1)(2)的探究,请提出一个正确命题.(不要求证明)

查看答案和解析>>

已知⊙O1和⊙O2的半径都等于1,O1O2=5,在线段O1O2的延长线上取一点O3,使O2O3=3,以O3为圆心,R=5为半径作圆.

(1)如图1,⊙O3与线段O1O2相交于点P1,过点P1分别作⊙O1和⊙O2的切线P1A1、P1B1(A1、B1为切点),连接O1A1、O2B1,求P1A1:P1B1的值;
(2)如图2,若过O2作O2P2⊥O1O2交O3于点P2,又过点P2分别作⊙O1和⊙O2的切线P2A2、P2B2(A2、B2为切点),求P2A2:P2B2的值;
(3)设在⊙O3上任取一点P,过点P分别作⊙O1和⊙O2的切线PA、PB(A、B为切点),由(1)(2)的探究,请提出一个正确命题.(不要求证明)

查看答案和解析>>

(2006•宜宾)已知⊙O1和⊙O2的半径都等于1,O1O2=5,在线段O1O2的延长线上取一点O3,使O2O3=3,以O3为圆心,R=5为半径作圆.

(1)如图1,⊙O3与线段O1O2相交于点P1,过点P1分别作⊙O1和⊙O2的切线P1A1、P1B1(A1、B1为切点),连接O1A1、O2B1,求P1A1:P1B1的值;
(2)如图2,若过O2作O2P2⊥O1O2交O3于点P2,又过点P2分别作⊙O1和⊙O2的切线P2A2、P2B2(A2、B2为切点),求P2A2:P2B2的值;
(3)设在⊙O3上任取一点P,过点P分别作⊙O1和⊙O2的切线PA、PB(A、B为切点),由(1)(2)的探究,请提出一个正确命题.(不要求证明)

查看答案和解析>>

已知⊙O1和⊙O2的半径都等于1,O1O2=5,在线段O1O2的延长线上取一点O3,使O2O3=3,以O3为圆心,R=5为半径作圆.

(1)如图1,⊙O3与线段O1O2相交于点P1,过点P1分别作⊙O1和⊙O2的切线P1A1、P1B1(A1、B1为切点),连接O1A1、O2B1,求P1A1:P1B1的值;
(2)如图2,若过O2作O2P2⊥O1O2交O3于点P2,又过点P2分别作⊙O1和⊙O2的切线P2A2、P2B2(A2、B2为切点),求P2A2:P2B2的值;
(3)设在⊙O3上任取一点P,过点P分别作⊙O1和⊙O2的切线PA、PB(A、B为切点),由(1)(2)的探究,请提出一个正确命题.(不要求证明)

查看答案和解析>>


同步练习册答案