通过教材图形.识别什么叫正多边形的中心.正多边形的中心角.正多边形的边心距? 查看更多

 

题目列表(包括答案和解析)

O是边长为a的正多边形的中心,将一块半径足够长,圆心角为α的扇形纸板的圆心放在O点处,并将纸板绕O点旋转.
(1)若正多边形为正三角形,扇形的圆心角α=120°,请你通过观察或测量,填空:
①如图1,正三角形ABC的边被扇形纸板覆盖部分的总长度为
 

②如图2,正三角形ABC的边被扇形纸板覆盖部分的总长度为
 

(2)若正多边形为正方形,扇形的圆心角α=90°时,①如图3,正方形ABCD的边被扇形纸板覆盖部分的总长度为
 

②如图4,正方形ABCD的边被扇形纸板覆盖部分的总长度为多少?并给予证明;
(3)若正多边形为正五边形,如图5,当扇形纸板的圆心角α为
 
时,正五边形的边被扇形纸板覆盖部分的总长度仍为定值a.
(4)一般地,将一块半径足够长的扇形纸板的圆心放在边长为a的正n边形的中心O点处,并将纸板绕O点旋转.当扇形纸板的圆心角为
 
时,正n边形的边被扇形纸板覆盖部分的总长度为定值a.
精英家教网精英家教网

查看答案和解析>>

等腰三角形是我们熟悉的图形之一,下面介绍一种等分等边三角形面积的方法:如图(1),在△ABC中,AB=AC,把底边BC分成m等份,连接顶点A和底边BC各等分点的线段,即可把这个三角形的面积m等分.
问题的提出:任意给定一个正n边形,你能把它的面积m等分吗?
探究与发现:为了解决这个问题,我们先从简单问题入手:怎样从正三角形的中一心(正多边形的各对称轴的交点,又称为正多边形的中心)引线段,才能将这个正三角形的面积m等分?
如果要把正三角形的面积四等分,我们可以先连接正三角形的中心和各顶点(如图(2),这些线段将这个正三角形分成了三个全等的等腰三角形);再把所得的每个等腰三角形的底边四等分,连接中心和各边等分点(如图(3),这些线段把这个正三角形分成了12个面积相等的小三角形);最后,依次把相邻的三个小三角形拼合在一起(如图(4)).这样就把正三角形的面积四等分.

(1)实验与验证:依照上述方法,利用刻度尺,在图(5)中画出一种将正三角形的面积五等分的简单示意图;
(2)猜想与证明:怎样从正三角形的中心引线段,才能将这个正三角形的面积m等分?叙述你的分法并说明理由;
(3)拓展与延伸:怎样从正方形的中心引线段,才能将这个正方形的面积m等分?(叙述方法即可,不需说明理由)
(4)向题解决:怎样从正n边形的中心引线段,才能将这个正n边形的面积m等分?(叙述分法即可,不需说明理由).

查看答案和解析>>

5、对于一个正多边形,下列四个命题中,错误的是 (  )

查看答案和解析>>

在四边形ABCD中,对角线AC,BD交于点O,点P是在线段BC上任意一点(与点B不重合),∠BPE=
1
2
∠BCA,PE交BO于点E,过点B作BF⊥PE,垂足为F,交AC于点G.
(1)若ABCD为正方形,
①如图(1),当点P与点C重合时.△BOG是否可由△POE通过某种图形变换得到?证明你的结论;
②结合图(2)求
BF
PE
的值;
(2)如图(3),若ABCD为菱形,记∠BCA=α,请探究并直接写出
BF
PE
的值.(用含α的式子表示)

查看答案和解析>>

(2012•奉贤区三模)下列说法错误的是(  )

查看答案和解析>>


同步练习册答案