教材118页习题24.3拓广探索第8题 [布置作业] 教材117页习题24.3第5.6题 查看更多

 

题目列表(包括答案和解析)

拓广探索
七年某班师生为了解决“22012个位上的数字是
6
6
.”这个问题,通过观察、分析、猜想、验证、归纳等活动,从而使问题得以解决,体现了从特殊到一般的数学思想方法.师生共同探索如下:
(1)认真填空,仔细观察.
因为21=2,所以21个位上的数字是2;
因为22=4,所以22个位上的数字是4;
因为23=8,所以23个位上的数字是8;
因为24=
16
16
,所以24个位上的数字是
6
6

因为25=
32
32
,所以25个位上的数字是
2
2

因为26=
64
64
,所以26个位上的数字是
4
4

(2)①小明是个爱动脑筋的学生,他利用上述方法继续探索,马上发现了规律,于是猜想:210个位上的数字是4,你认为对吗?试通过计算加以验证.
②同学们,你们发现的规律与小明一样吗?不妨把你们发现的规律写出来:
尾数每4个一循环分别为:2,4,8,6
尾数每4个一循环分别为:2,4,8,6

(3)利用上述得到的规律,可知:22012个位上的数字是
6
6

(4)利用上述研究数学问题的思想与方法,试求:32013个位上的数字是
3
3

查看答案和解析>>

拓广探索
七年某班师生为了解决“22012个位上的数字是______.”这个问题,通过观察、分析、猜想、验证、归纳等活动,从而使问题得以解决,体现了从特殊到一般的数学思想方法.师生共同探索如下:
(1)认真填空,仔细观察.
因为21=2,所以21个位上的数字是2;
因为22=4,所以22个位上的数字是4;
因为23=8,所以23个位上的数字是8;
因为24=______,所以24个位上的数字是______;
因为25=______,所以25个位上的数字是______;
因为26=______,所以26个位上的数字是______;
(2)①小明是个爱动脑筋的学生,他利用上述方法继续探索,马上发现了规律,于是猜想:210个位上的数字是4,你认为对吗?试通过计算加以验证.
②同学们,你们发现的规律与小明一样吗?不妨把你们发现的规律写出来:______.
(3)利用上述得到的规律,可知:22012个位上的数字是______.
(4)利用上述研究数学问题的思想与方法,试求:32013个位上的数字是______.

查看答案和解析>>

拓广探索:
如图,△ABC和△ECD是等边三角形.
(1)如图1,若B,C,D三点在一条直线上,BE和AD有怎样的大小关系?试证明.
(2)如图2,若B,C,D三点不在一条直线上而两三角形内部不重合呢?
(3)如图3,若B,C,D三点不在一条直线上而两三角形内部部分重合呢?

查看答案和解析>>

拓广探索
请阅读某同学解下面分式方程的具体过程.
解方程
1
x-4
+
4
x-1
=
2
x-3
+
3
x-2

解:
1
x-4
-
3
x-2
=
2
x-3
-
4
x-1
,①
-2x+10
x2-6x+8
=
-2x+10
x2-4x+3
,②
1
x2-6x+8
=
1
x2-4x+3
,③
∴x2-6x+8=x2-4x+3.        ④
x=
5
2

x=
5
2
代入原方程检验知x=
5
2
是原方程的解.
请你回答:
(1)得到①式的做法是
 
;得到②式的具体做法是
 
;得到③式的具体做法是
 
;得到④式的根据是
 

(2)上述解答正确吗?如果不正确,从哪一步开始出现错误答:
 
.错误的原因是
 

(3)给出正确答案(不要求重新解答,只需把你认为应改正的加上即可).

查看答案和解析>>

(6分) 如图,在平面直角坐标系中,直线l是第一、三象限的角平分线
实验与探究:

【小题1】(1)由图观察易知A(0,2)关于直线l的对称点的坐标为(2,0),请在图中分别标明B(5,3)、C(-2,5) 关于直线l的对称点的位置,并写出他们的坐标:             、             
归纳与发现:
【小题2】(2)结合图形观察以上三组点的坐标,你会发现:坐标平面内任一点P(a,b)关于第一、三象限的角平分线l的对称点的坐标为           
运用与拓广:
【小题3】(3)已知两点D(1,-3)、E(-1,-4),试在直线l上确定一点Q,使点QDE两点的距离之和最小,并求出Q点坐标.

查看答案和解析>>


同步练习册答案