原题答案:证明:在△AOP和△BOP中,OA=OB,OP=OP,PA=PB, ∴△AOP≌△BOP,∴∠1=∠2,即OP平分∠AOB. 变形题答案:证明:在△AOP和△BOP中,OA=OB,∠2=∠1,OP=OP, ∴△AOP ≌△BOP,∴PA=PB. 查看更多

 

题目列表(包括答案和解析)

19、如图,已知∠APO=∠BPO,∠A=∠B,说明△AOP≌△BOP.
解:在△AOP和△BOP中,
∵∠A=∠B   (已知 )
∠APO=∠BPO
(已知)

OP=OP
(公共边)

△AOP
△BOP

查看答案和解析>>

如图,已知∠APO=∠BPO,∠A=∠B,说明△AOP≌△BOP.
解:在△AOP和△BOP中,
∵∠A=∠B  (已知 )
∠APO=∠BPO________
OP=OP________
∴________≌________.

查看答案和解析>>

(2012•南湖区二模)在特殊四边形的复习课上,王老师出了这样一道题:
如图1,在?ABCD中,E、F、G、H分别为AB,BC,CD,DA边上的动点,连接EG,HF相交于点O,且∠HOE=∠ADC,若AB=a,AD=b,试探究:EG与FH的数量关系.
经过小组讨论后,小聪建议分以下三步进行,请你解答:
(1)特殊情况,探索结论
当?ABCD是边长为a的正方形时(如图2),请写出EG与FH的数量关系(不必证明);
(2)尝试变题,再探思路
当?ABCD是边长为a的菱形时(如图3),EG与FH又有怎样的数量关系呢?
小聪想:要求EG与FH的数量关系,就要构成全等三角形或相似三角形,于是,分别过点G、H作GM⊥AB于点M,HN⊥BC于点N,在△HNF和△GME中,有∠GME=∠HNF=Rt∠,由菱形面积与性质可得GM=HN,能否从已知条件得到∠MGE=∠NHF呢?请你根据小聪的思路完成解答过程;
(3)特例启发,解答题目
猜想:原题中EG与FH的数量关系是
EG
FH
=
b
a
EG
FH
=
b
a
,并说明理由.

查看答案和解析>>

阅读下题的两个解答过程,然后回答问题:
如图,已知AD与BC交于点O,且PC=PD,OA=OB,∠A=∠B.
求证:OP平分∠APB.
(解法一)证明:在△POA和△POB中,
OA=OB
∠A=∠B
OP=OP
,∴△POA≌△POB(SAS)
∴∠OPA=∠OPB即OP平分∠APB
(解法二)证明:∵PC=PD…①
∴PC+AC=PD+BD即PA=PB…②
在△POA和△POB中
OA=OB
PA=PB
OP=OP
…③∴△POA≌△POB(SSS)…④∴∠OPA=∠OPB即OP平分∠APB…⑤
问题:(1)解法一:
错误
错误
 (填“正确”或“错误”),若是错误的,请你简述错误的原因
根据SSA不能推出两三角形全等
根据SSA不能推出两三角形全等
;若正确,第二个空格不用回答.
(2)解法二:
错误
错误
(填“正确”或“错误”),若正确,本题到此结束;
若不正确,在第
步开始出错,错误原因是
不知道AC=BD
不知道AC=BD

(3)请对解法二进行更正,或者写出其它正确的解法也可.

查看答案和解析>>

数学课堂上,徐老师出示一道试题:
如图1所示,在正三角形ABC中,M是BC边(不含端点B、C)上任意一点,P是BC延长线上一点,N是∠ACP的平分线上一点.若∠AMN=60°,求证:AM=MN.
(1)经过思考,小明展示了一种正确的证明过程.请你将证明过程补充完整.
证明:在AB上截取EA=MC,连接EM,得△AEM.
∵∠1=180°-∠AMB-∠AMN,∠2=180°-∠AMB-∠B,∠AMN=∠B=60°,∴∠1=∠2.
又CN平分∠ACP,∠4=
12
∠ACP=60°.∴∠MCN=∠3+∠4=120°…①
又∵BA=BC,EA=MC,∴BA-EA=BC-MC,即BE=BM.
∴△BEM为等边三角形.∴∠6=60°.
∴∠5=180°-∠6=120°.…②
∴由①②得∠MCN=∠5.
在△AEM和△MCN中,
 

∴△AEM≌△MCN (ASA).∴AM=MN.

(2)若将试题中的“正三角形ABC”改为“正方形A1B1C1D1”(如图2),N1是∠D1C1P1的平分线上一点,则当∠A1M1N1=90°时,结论A1M1=M1N1.是否还成立?(直接写出答案,不需要证明)
(3)若将题中的“正三角形ABC”改为“正多边形AnBnCnDn…Xn”,请你猜想:当∠AnMnNn=
 
°时,结论AnMn=MnNn仍然成立?(直接写出答案,不需要证明)
精英家教网

查看答案和解析>>


同步练习册答案