:1.请回答圆的面积公式.2.请回答扇形的面积公 (以上三问应安排中下生回答)4.请同学看图7-163.弦AB把圆分成两部分.这两部分都是弓形.哪位同学记得弓形的定义?(安排中下生回答:由弦及其所对的弧组成的图形叫做弓形.) 所组的弓形.它的面积能不能跟扇形面积联系上呢?(安排中上生回答:能.连结OA.OB).大家再观察图形.这个弓形的面积如何通过扇形 也就是说组成弓形的弧如果是劣弧.那么它的面积应该等于以此劣弧与半径组成的扇形面积减去这两半径与弦组成的三角形的面积. 和半径OA.OB组成的图形是扇形吗?为什么?(安排中上生回答:是.因为它符合扇形的定义.) 如果弦AB是⊙O的直径.那么以AB为弦.半圆为弧的弓形的面积又是多少?(安排中下生回答:圆面积的一半.) 于是我们得出结论:如果组成弓形的弧是半圆.则此弓形面积是圆面积的一半,如果组成弓形的弧是劣弧则它的面积等于以此劣弧为弧的扇形面积减去三角形的面积,如果组成弓形的弧是优弧.则它的面积等于以此优弧为弧的扇形面积加上三角形的面积.也就是说:要计算弓形的面积.首先观察它的弧属于半圆?劣弧?优弧?只有对它分解正确才能保证计算结果的正确. 哪位同学知道要对这种题进行计算.首先要作什么工作?(安排中下 三角形AOB的面积怎么求?(安排中上生回答:过O作OD⊥AB.垂 以只要解此△AOD即可求出OD.AD的长.则S△AOB可求.) 请同学们把这题计算出来.(安排一学生上黑板做.其余在练习本上 请同学们讨论研究第2题.并计算出它的结果.(安排中上生上黑板 水平放着的圆柱形排水管的截面半径是0.6m.其中水面高是0.3m.求截面上有水的弓形的面积.(精确到0.01m2) “水平放着的圆柱形排水管的截面半径是0.6m 为你提供了什么数学信息?(安排中上生回答:⊙O的半径是0.6m.)“其中水面高是0.3m .又为你提供了什么信息?(安排中上生回答:弓形高CD是0.3m.)“求截面上有水的弓形的面积为你提供什么信息?(安排中等生回答: 长.看看已知条件.你打算怎么办?(安排中上学生回答:因弓形高CD已知.半径已知.所以弦心距OD可求.根据垂径定理.Rt△AOD可解.即∠AOD的度数可求.所以∠AOB的度数可求.n既然可求当然 请问△AOB的面积又该如何求?(安排中等学生回答:通过解此△AOD可求出AD的长.再据垂径定理可求AB的长.OD已求.所以S△AOB可求.) 请同学们完成这道应用题.(安排一位中上学生到黑板做.其余学生在练习本上完成). 弓形面积虽然没有计算公式.但可以选用图形分解法.将它转化为扇形与三角形的和或差来解决.那么其它一些组合图形.不也可以用图形分解法来求其面积吗? 幻灯示题:如图7-166.已知正△ABC的边长为a.分别以A.B. 图形面积S. 显然图形中阴影部分的面积无计算公式.因此必须将它转化为有公式图形的和或差来解决.想想看.你打算如何求S阴?(安排中等生回答:S阴=S正△ABC-3S扇) 正三角形的边长为a.显然S正△ABC可求.由于正△ABC.所以∠ 请同学们完成此题.(安排一中上学生上黑板.其余在练习本上完成). 幻灯示题:已知:⊙O的半径为R.直径AB⊥CD.以B为圆心. 大家观察.图中的阴影部分面积应当如何求?(安排中下生回 我的看法对还是不对?为什么?(安排举手的学生回答:图形BCAD不是扇形.因为扇形的定义是在同一个圆中.一条弧和过弧端点的两条半径 的半径.因此将阴影面积看成两扇形的差是错误的.) 请同学们按照正确思路完成此题.(安排一中等学生上黑板.其余学生在练习本上做) 查看更多

 

题目列表(包括答案和解析)

11、在圆的面积公式S=πR2中,π是
常量
(填“常量”或“变量”),S和R是
变量
(填“常量”或“变量”).

查看答案和解析>>

圆的面积公式S=πr2中,S和r之间的关系是(  )

查看答案和解析>>

11、在圆的面积公式S=πR2中,常量是
π

查看答案和解析>>

对于圆的面积公式S=πR2,下列说法中,正确的为(  )
A、π是自变量B、R2是自变量C、R是自变量D、πR2是自变量

查看答案和解析>>

在圆的面积公式S=πR2中,常量是______.

查看答案和解析>>


同步练习册答案