同学们,我们曾经研究过n×n的正方形网格,得到了网格中正方形的总数的表达式为1
2+2
2+3
2+…+n
2.但n为100时,应如何计算正方形的具体个数呢?下面我们就一起来探究并解决这个问题.首先,通过探究我们已经知道0×1+1×2+2×3+…+(n-l)×n
=
n(n+l)(n-l)时,我们可以这样做:
(1)观察并猜想:
1
2+2
2=(1+0)×1+(1+1)×2=l+0×1+2+1×2=(1+2)+(0×1+1×2)
1
2+2
2+3
2=(1+0)×1+(1+1)×2+(l+2)×3
=1+0×1+2+1×2+3+2×3
=(1+2+3)+(0×1+1×2+2×3)
1
2+2
2+3
2+4
2=(1+0)×1+(1+1)×2+(l+2)×3+
=1+0×1+2+1×2+3+2×3+
=(1+2+3+4)+(
)
…
(2)归纳结论:
1
2+2
2+3
2+…+n
2=(1+0)×1+(1+1)×2+(1+2)×3+…[1+(n-l)]n
=1+0×1+2+1×2+3+2×3+…+n+(n-1)×n
=(
)+[
]
=
+
=
×
(3 )实践应用:
通过以上探究过程,我们就可以算出当n为100时,正方形网格中正方形的总个数是
.