3. 体验数学方法的多样性灵活性.提高解题能力. 教学重点:正确理解和区分一次试验中包含两步的试验. 教学难点:当可能出现的结果很多时.简洁地用列表法求出所有可能结果. 查看更多

 

题目列表(包括答案和解析)

12、你知道数学中的整体思想吗?解题中,若把注意力和着眼点放在问题的整体上,多方位思考、联想、探究,进行整体思考、整体变形,从不同的方面确定解题策略,能使问题迅速获解.
你能用整体的思想方法把下列式子分解因式吗?
①(x+2y)2-2(x+2y)+1                   ②(a+b)2-4(a+b-1)

查看答案和解析>>

你知道数学中的整体思想吗?解题中,若把注意力和着眼点放在问题的整体上,多方位思考、联想、探究,进行整体思考、整体变形,从不同的方面确定解题策略,能使问题迅速获解.
你能用整体的思想方法把下列式子分解因式吗?
①(x+2y)2-2(x+2y)+1          ②(a+b)2-4(a+b-1)

查看答案和解析>>

你知道数学中的整体思想吗?解题中,若把注意力和着眼点放在问题的整体上,多方位思考、联想、探究,进行整体思考、整体变形,从不同的方面确定解题策略,能使问题迅速获解.
你能用整体的思想方法把下列式子分解因式吗?
①(x+2y)2-2(x+2y)+1                   ②(a+b)2-4(a+b-1)

查看答案和解析>>

你知道数学中的整体思想吗?解题中,若把注意力放在问题的整体上,多方位思考、联想、探究,进行整体思考、整体变形、整体代入,从不同方面确定解题策略,可以使问题快速得到解决.
请你用整体思想把下列式子因式分解:
(1)(2a-3b)2+6(2a-3b)+9;
(2)(x+2y)2-4(x+2y-1).

查看答案和解析>>

阅读下面的材料,并回答所提出的问题:如图所示,在锐角三角形ABC中,求证:
b
sinB
=
c
sinC

这个三角形不是一个直角三角形,不能直接使用锐角三角函数的知识去处理,所以必须构造直角三角形,精英家教网过点A作AD⊥BC,垂足为D,则在Rt△ABD和Rt△ACD中由正弦定义可完成证明.
解:如图,过点A作AD⊥BC,垂足为D,
在Rt△ABD中,sinB=
AD
AB
,则AD=csinB
Rt△ACD中,sinC=
AD
AC
,则AD=bsinC
所以c sinB=b sinC,即
b
sinB
=
c
sinC

(1)在上述分析证明过程中,主要用到了下列三种数学思想方法的哪一种(  )
A、数形结合的思想;B、转化的思想;C、分类的思想
(2)用上述思想方法解答下面问题.
在△ABC中,∠C=60°,AC=6,BC=8,求AB和△ABC的面积.
(3)用上述结论解答下面的问题(不必添加辅助线)
在锐角三角形ABC中,AC=10,AB=5
6
,∠C=60°,求∠B的度数.

查看答案和解析>>


同步练习册答案