在一场篮球比赛中,一球星将球出手时,球离地面
米,球的运行轨迹为抛物线,当球运行的水平距离为4米时,球到达的最高点离地4米.
(1)建立适当的平面直角坐标系,使得球出手时的坐标是(0,
),球运行的最高点坐标为(4,4),求出此坐标系中球的运行轨迹抛物线对应的函数关系式(不要求写取值范围);
(2)若球投入了离地面3米高的篮筐,请求篮筐离球星(坐标原点)的水平距离;
(3)如图,在篮球场地面以篮筐正下方点O为圆心一些同心的半圆弧,半圆弧上有一些投篮点,相邻的半圆之间宽度1 米,最内半圆弧的半径为r 米,其上每0.2π米的弧长上都是该球星投篮命中率较高的点(含半圆弧的两端点),其它半圆上的命中率较高的点个数与最内半圆弧上的个数相同,若该球星在(1)中投球站立的位置恰好在最外面的一个半圆弧上,求当r为多少时,投篮的同心半圆弧中投篮命中率较高的点的个数最多?