3.抛物线y=ax2+bx+c.若a>0.当x≤时.y随x的增大而减小,当x≥时.y随x的增大而增大.若a<0.当x≤时.y随x的增大而增大,当x≥时.y随x的增大而减小. 查看更多

 

题目列表(包括答案和解析)

(2007•郑州模拟)如图,已知直线y=-x+2与坐标轴交于A、B两点,点P在x轴上.
(1)求A、B两点的坐标;
(2)圆⊙P半径r=
2
,当⊙P与直线AB相切时,求圆心P的坐标;
(3)当⊙P与直线AB相切时,恰有一条顶点坐标为C(2,2)的抛物线y=ax2+bx+c经过圆心P,若该抛物线与x轴的两个交点中右边的交点为M,在x轴上方同时也在直线AB上方的抛物线上是否存在一点Q,使四边形ABMQ的面积最大?若存在,请求出这个最大面积;若不存在,请说明理由.

查看答案和解析>>

如图,已知直线y=-x+2与坐标轴交于A、B两点,点P在x轴上.
(1)求A、B两点的坐标;
(2)圆⊙P半径r=,当⊙P与直线AB相切时,求圆心P的坐标;
(3)当⊙P与直线AB相切时,恰有一条顶点坐标为C(2,2)的抛物线y=ax2+bx+c经过圆心P,若该抛物线与x轴的两个交点中右边的交点为M,在x轴上方同时也在直线AB上方的抛物线上是否存在一点Q,使四边形ABMQ的面积最大?若存在,请求出这个最大面积;若不存在,请说明理由.

查看答案和解析>>

如图,已知直线y=-x+2与坐标轴交于A、B两点,点P在x轴上.
(1)求A、B两点的坐标;
(2)圆⊙P半径r=数学公式,当⊙P与直线AB相切时,求圆心P的坐标;
(3)当⊙P与直线AB相切时,恰有一条顶点坐标为C(2,2)的抛物线y=ax2+bx+c经过圆心P,若该抛物线与x轴的两个交点中右边的交点为M,在x轴上方同时也在直线AB上方的抛物线上是否存在一点Q,使四边形ABMQ的面积最大?若存在,请求出这个最大面积;若不存在,请说明理由.

查看答案和解析>>

已知A,A是抛物线y=
1
2
x2上两点,A1B1,A3B3分别垂直于x轴,垂足分别为B1,B3,点C是线段A1A3的中点,过点C作CB2垂直于x轴,垂足为B2,CB2交抛物线于点A2
精英家教网
(1)如图1,已知A1,A3两点的横坐标依次为1,3,求线段CA2的长;
(2)如图2,若将抛物线y=
1
2
x2改为抛物线y=
1
2
x2-x+1,且A1,A2,A3三点的横坐标为连续的整数,其他条件不变,求线段CA2的长;
(3)若将抛物线y=
1
2
x2改为抛物线y=ax2+bx+c(a>0),A1,A2,A3三点的横坐标为连续整数,其他条件不变,试猜想线段CA2的长(用a,b,c表示,并直接写出答案).

查看答案和解析>>

如图,四边形ABCD是菱形,点D的坐标是(0,
3
),以点C为顶点的抛物线y=ax2+bx+c恰经过x精英家教网轴上的点A,B.
(1)求点C的坐标;
(2)若抛物线向上平移后恰好经过点D,求平移后抛物线的解析式.

查看答案和解析>>


同步练习册答案