7.二次函数知识很容易与其它知识综合应用.而形成较为复杂的综合题目.因此.以二次函数知识为主的综合性题目是中考的热点考题.往往以大题形式出现. 中考典例 查看更多

 

题目列表(包括答案和解析)

如图,一个隧道的横截面成抛物线形,它的底部宽12米、高6米.车辆在此隧道可以双向通行,但规定车辆必须在隧道的中心线右侧、距离路边缘2米这一范围内行驶,并保持车辆顶部与隧道的空隙不少于
13
米.
(1)画出以抛物线的顶点为原点的直角坐标系;
(2)在第(1)小题的基础上,求该隧道横截面的抛物线的函数关系式,并指出自变量x的取值范围;
(3)你能否根据题中的要求,应用已有的二次函数知识,确定通过隧道车辆的高度不能超过多少米?

查看答案和解析>>

小明在复习数学知识时,针对“利用函数求一元二次方程的解”整理了以下几种方法,请你将有关内容补充完整:

例题:求一元二次方程的两个解。

1.(1)解法一:利用二次函数图象与两坐标轴的交点求解。

如图,把方程的解看成是二次函数__________的图象与轴交点的横坐标,即就是方程的解。

2.(2)解法二:利用两个函数图象的交点求解。

①把方程的解看成是二次函数_________的图象与一个一次函数_________的图象交点的横坐标。

②画出这两个函数的图象,用轴上标出方程的解。

 

查看答案和解析>>

小明在复习数学知识时,针对“利用函数求一元二次方程的解”整理了以下几种方法,请你将有关内容补充完整:
例题:求一元二次方程的两个解。
【小题1】(1)解法一:利用二次函数图象与两坐标轴的交点求解。
如图,把方程的解看成是二次函数__________的图象与轴交点的横坐标,即就是方程的解。

【小题2】(2)解法二:利用两个函数图象的交点求解。
①把方程的解看成是二次函数_________的图象与一个一次函数_________的图象交点的横坐标。
②画出这两个函数的图象,用轴上标出方程的解。

查看答案和解析>>

九(1)班数学课题学习小组,为了研究学习二次函数问题,他们经历了实践一应用——探究的过程:

  (1)实践:他们对一条公路上横截面为抛物线的单向双车道的隧道(如图①)进行测量,测得一隧道的路面宽为10m.隧道顶部最高处距地面6.25m,并画出了隧道截面图.建立了如图②所示的直角坐标系.请你求出抛物线的解析式.

  (2)应用:按规定机动车辆通过隧道时,车顶部与隧道顶部在竖直方向上的高度差至少为0.5m.为了确保安全.问该隧道能否让最宽3m.最高3.5m的两辆厢式货车居中并列行驶(两车并列行驶时不考虑两车间的空隙)?

  (3)探究:该课题学习小组为进一步探索抛物线的有关知识,他们借助上述抛物线模型塑.提出了以下两个问题,请予解答:

Ⅰ.如图③,在抛物线内作矩形ABCD,使顶点C、D落在抛物线上.顶点A、B落在x轴上.设矩形ABCD的周长为,求的最大值。

Ⅱ.如图④,过原点作一条的直线OM,交抛物线于点M.交抛物线对称轴于点N,P为直线OM上一动点,过P点作x轴的垂线交抛物线于点Q。问在直线OM上是否存在点P,使以P、N、Q为顶点的三角形是等腰直角三角形?若存在,请求出P点的坐标;若不存在,请说明理由.

查看答案和解析>>

小明在复习数学知识时,针对“利用函数求一元二次方程的解”整理了以下几种方法,请你将有关内容补充完整:
例题:求一元二次方程的两个解。
【小题1】(1)解法一:利用二次函数图象与两坐标轴的交点求解。
如图,把方程的解看成是二次函数__________的图象与轴交点的横坐标,即就是方程的解。

【小题2】(2)解法二:利用两个函数图象的交点求解。
①把方程的解看成是二次函数_________的图象与一个一次函数_________的图象交点的横坐标。
②画出这两个函数的图象,用轴上标出方程的解。

查看答案和解析>>


同步练习册答案