2.使学生掌握用图象或通过配方确定抛物线的开口方向.对称轴和顶点坐标. 查看更多

 

题目列表(包括答案和解析)

问题背景:
若矩形的周长为1,则可求出该矩形面积的最大值.我们可以设矩形的一边长为x,面积为s,则s与x的函数关系式为:s=-x2+
1
2
x
(x>0),利用函数的图象或通过配方均可求得该函数的最大值.
提出新问题:
若矩形的面积为1,则该矩形的周长有无最大值或最小值?若有,最大(小)值是多少?
分析问题:
若设该矩形的一边长为x,周长为y,则y与x的函数关系式为:y=2(x+
1
x
)
(x>0),问题就转化为研究该函数的最大(小)值了.
解决问题:
借鉴我们已有的研究函数的经验,探索函数y=2(x+
1
x
)
(x>0)的最大(小)值.
(1)实践操作:填写下表,并用描点法画出函数y=2(x+
1
x
)
(x>0)的图象:
x 1/4 1/3 1/2 1 2 3 4
y
17
2
20
3
5 4 5
20
3
17
2
(2)观察猜想:观察该函数的图象,猜想当x=
1
1
时,函数y=2(x+
1
x
)
(x>0)有最
值(填“大”或“小”),是
4
4

(3)推理论证:问题背景中提到,通过配方可求二次函数s=-x2+
1
2
x
(x>0)的最大值,请你尝试通过配方求函数y=2(x+
1
x
)
(x>0)的最大(小)值,以证明你的猜想.〔提示:当x>0时,x=(
x
)2

查看答案和解析>>

(2012•达州)【问题背景】
若矩形的周长为1,则可求出该矩形面积的最大值.我们可以设矩形的一边长为x,面积为s,则s与x的函数关系式为:s=-x2+
1
2
x(x
>0),利用函数的图象或通过配方均可求得该函数的最大值.
【提出新问题】
若矩形的面积为1,则该矩形的周长有无最大值或最小值?若有,最大(小)值是多少?
【分析问题】
若设该矩形的一边长为x,周长为y,则y与x的函数关系式为:y=2(x+
1
x
)
(x>0),问题就转化为研究该函数的最大(小)值了.
【解决问题】
借鉴我们已有的研究函数的经验,探索函数y=2(x+
1
x
)
(x>0)的最大(小)值.
(1)实践操作:填写下表,并用描点法画出函数y=2(x+
1
x
)
(x>0)的图象:
 x  
1
4
 
1
3
 
1
2
 1  2  3  4
 y              
(2)观察猜想:观察该函数的图象,猜想当x=
1
1
时,函数y=2(x+
1
x
)
(x>0)有最
值(填“大”或“小”),是
4
4

(3)推理论证:问题背景中提到,通过配方可求二次函数s=-x2+
1
2
x(x
>0)的最大值,请你尝试通过配方求函数y=2(x+
1
x
)
(x>0)的最大(小)值,以证明你的猜想.〔提示:当x>0时,x=(
x
)2

查看答案和解析>>

问题背景

若矩形的周长为1,则可求出该矩形面积的最大值.我们可以设矩形的一边长为x,面积为s,则s与x的函数关系式为: ,利用函数的图象或通过配方均可求得该函数的最大值.

提出新问题

若矩形的面积为1,则该矩形的周长有无最大值或最小值?若有,最大(小)值是多少?

分析问题

若设该矩形的一边长为x,周长为y,则y与x的函数关系式为:,问题就转化为研究该函数的最大(小)值了.

解决问题

借鉴我们已有的研究函数的经验,探索函数的最大(小)值.

(1)实践操作:填写下表,并用描点法画出函数的图象:

 

x

···

1

2

3

4

···

y

 

 

 

 

 

 

 

 

 

 

 

(2)观察猜想:观察该函数的图象,猜想当x=         时,函数有最    值(填

“大”或“小”),是          .

(3)推理论证:问题背景中提到,通过配方可求二次函数的最大值,请你尝试通过配方求函数的最大(小)值,以证明你的猜想. 〔提示:当时,

 

查看答案和解析>>

问题背景
若矩形的周长为1,则可求出该矩形面积的最大值.我们可以设矩形的一边长为x,面积为s,则s与x的函数关系式为: ,利用函数的图象或通过配方均可求得该函数的最大值.
提出新问题
若矩形的面积为1,则该矩形的周长有无最大值或最小值?若有,最大(小)值是多少?
分析问题
若设该矩形的一边长为x,周长为y,则y与x的函数关系式为:,问题就转化为研究该函数的最大(小)值了.
解决问题
借鉴我们已有的研究函数的经验,探索函数的最大(小)值.
(1)实践操作:填写下表,并用描点法画出函数的图象:

x
···



1
2
3
4
···
y
 
 
 
 
 
 
 
 
 
 

(2)观察猜想:观察该函数的图象,猜想当x=        时,函数有最   值(填
“大”或“小”),是         .
(3)推理论证:问题背景中提到,通过配方可求二次函数的最大值,请你尝试通过配方求函数的最大(小)值,以证明你的猜想. 〔提示:当时,

查看答案和解析>>

问题背景
若矩形的周长为1 ,则可求出该矩形面积的最大值. 我们可以设矩形的一边长为x,面积为s,则s与x的函数关系式为:(x﹥0),利用函数的图象或通过配方均可求得该函数的最大值。
提出新问题
若矩形的面积为1 ,则该矩形的周长有无最大值或最小值?若有,最大(小)值是多少?
分析问题
若设该矩形的一边长为x,周长为y,则y与x的函数关系式为:(x﹥0),问题就转化为研究该函数的最大(小)值了。
解决问题
借鉴我们已有的研究函数的经验,探索函数(x﹥0)的最大(小)值。
(1)实践操作:填写下表,并用描点法画出函数(x﹥0)的图象:
(2 )观察猜想:观察该函数的图象,猜想当x=         时,函数(x﹥0)有最    (填“大”或“小”)是            
(3)推理论证:问题背景中提到,通过配方可求二次函数(x﹥0)的最大值,请你尝试通过配方求函数(x﹥0)的最大(小)值,以证明你的猜想。〔提示:当x>0时,x=

查看答案和解析>>


同步练习册答案