2.过程与方法目标; 通过“探究----感悟----练习 .采用探究.讨论等方法进行. 查看更多

 

题目列表(包括答案和解析)

(2011•呼伦贝尔)根据题意,解答问题:
(1)如图①,已知直线y=2x+4与x轴、y轴分别交于A、B两点,求线段AB的长.
(2)如图②,类比(1)的解题过程,请你通过构造直角三角形的方法,求出点M(3,4)与点N(-2,-1)之间的距离.

查看答案和解析>>

(1)如图(1),AB∥CD,探究∠BED与∠B+∠D的关系:
过点E作EM∥AB
∴∠1=
∠B
∠B

∵EM∥AB,AB∥CD
EM∥CD
EM∥CD

∴∠2=
∠D
∠D

∴∠1+∠2=∠B+∠D,即∠BED与∠B+∠D的关系为:
∠BED=∠B+∠D
∠BED=∠B+∠D

(2)如图(2),AB∥CD,类比上述方法,试探究∠E+∠G与∠B+∠F+∠D的关系,并写出推理过程;
(3)如图(3),AB∥CD,请直接写出你能得到的结论.

查看答案和解析>>

根据题意,解答下列问题:
精英家教网
(1)如图①,已知直线y=2x+4与x轴、y轴分别交于A、B两点,求线段AB的长;
(2)如图②,类比(1)的求解过程,请你通过构造直角三角形的方法,求出两点M(3,4),N(-2,-1)之间的距离;
(3)如图③,P1(x1,y1),P2(x1,y2)是平面直角坐标系内的两点.求证:P1P2=
(x2-x1)2+(y2-y1)2

查看答案和解析>>

如图1,在直角梯形ABCD中,AD∥BC,∠B=∠A=90°,AD=a,BC=b,AB=c,
操作示例:
我们可以取直角梯形ABCD的非直角腰CD的中点P,过点P作PE∥AB,裁掉△PEC,并将△PEC拼接到△PFD的位置,构成新的图形(如图2).
思考发现:
小明在操作后发现,该剪拼方法就是先将△PEC绕点P逆时针旋转180°到△PFD的位置,易知PE与PF在同一条直线上.又因为在梯形ABCD中,AD∥BC,∠C+∠ADP=180°,则∠FDP+∠ADP=180°,所以AD和DF在同一条直线上,那么构成的新图形是一个四边形,进而根据平行四边形的判定方法,可以判断出四边形ABEF是一个平行四边形,而且还是一个特殊的平行四边形--矩形.
实践探究:
(1)矩形ABEF的面积是
 
;(用含a,b,c的式子表示)
(2)类比图2的剪拼方法,请你就图3和图4的两种情形分别画出剪拼成一个平行四边形的示意图.
精英家教网
联想拓展:
小明通过探究后发现:在一个四边形中,只要有一组对边平行,就可以剪拼成平行四边形.
如图5的多边形中,AE=CD,AE∥CD,能否象上面剪切方法一样沿一条直线进行剪切,拼成一个平行四边形?若能,请你在图中画出剪拼的示意图并作必要的文字说明;若不能,简要说明理由.
精英家教网

查看答案和解析>>

根据题意,解答问题:

(1)如图1,已知直线y=2x+4与x轴、y轴分别交于A、B两点,求线段AB的长.
(2)如图2,类比(1)的解题过程,请你通过构造直角三角形的方法,求出点M(3,4)与点N(-2,-1)之间的距离.
(3)在(2)的基础上,若有一点D在x轴上运动,当满足DM=DN时,请求出此时点D的坐标.

查看答案和解析>>


同步练习册答案