合作学习.探索新知 : 问题1: 正方体的六个面是全等的正方形,如果正方形的棱长为x,表面积为y,那么y与x的关系可表示为? y=6x2 问题2: n边形的对角线数d与边数n之间有怎样的关系? d= 问题3: 某工厂一种产品现在的年产量是20件,计划今后两年增加产量.如果每年都比上一年的产量增加x倍,那么两年后这种产品的数量y将随计划所定的x的值而定,y与x之间的关系怎样表示? y=20x2+40x+20 观察以上三个问题所写出来的三个函数关系式有什么特点? 经化简后都具有y=ax²+bx+c 的形式,. v 我们把形如y=ax²+bx+c(其中a,b,c是常数.a≠0)的函数叫做二次函数 称:a为二次项系数.ax2叫做二次项;b为一次项系数.bx叫做一次项;c为常数项. 又例:y=x² + 2x – 3 它是一次函数? (3)它是正比例函数? 查看更多

 

题目列表(包括答案和解析)

(2013•莒南县一模)【典型练习】如果两个三角形有两条边和其中一边上的中线对应相等,那么这两个三角形全等.(无需证明)
【拓展变式】小明很顺利的完成了上面的练习后,又进一步对该命题进行了发散思维,把原命题中的一些条件进行了变换,得到了如下三个不同的命题:
(1)如果两个三角形有两条边和第三边上的中线对应相等,那么这两个三角形全等.
(2)如果两个三角形有两条边和第三边上的高对应相等,那么这两个三角形全等.
(3)如果两个三角形有两条边和夹角的平分线对应相等,那么这两个三角形全等.
【探索新知】小明对这三个命题,无法判断其命题的真假,于是他向老师求教.数学老师对命题(1)做出了一些指导,请你帮助小明完成下面的解答过程.
已知:如图,AB=A′B′,AD=A′D′,AD是BC边上的中线,A′D′是B′C′边上的中线,求证:△ABC≌△A′B′C′,
证明:如图,延长AD至E使AD=DE,连接BE,延长A′D′至E′使A′D′=D′E′,连接B′E′.
【合作学习】对于命题(2)、(3),你能帮助小明判断命题的真假吗?如果是真命题,请给完整的证明,如果是假命题,在下面的空白处做出解答.(要求:画出图形,说明理由.)

查看答案和解析>>

一次数学合作学习活动中,明明提出这样三个问题,请你帮他解决:
(1)把正方形ABCD与等腰直角三角形PAQ如图1所示重叠在一起,其中∠PAQ=90 °。点Q在边BC上,连接PD,△ADP与△ABQ全等吗?请说明理由。
(2)如图2,O为正方形ABCD对角线的交点,将一直角三角板FPQ的直角顶点 F与点O重合, 转动三角板使两直角边始终与BC、AB相交于点M、N,试探索OM与ON的数量关系,并说明理由。
(3)如图3,将(2)中的“正方形”改为“矩形”,其他条件不变,且AB = 4,AD = 6,
FM = x,FN =y,试求y与x之间的关系式。

查看答案和解析>>

某校研究性学习小组在研究相似图形时,发现相似三角形的定义、判定及其性质,可以拓展到扇形的相似中去.例如,可以定义:“圆心角相等且半径和弧长对应成比例的两个扇形叫做相似扇形”;相似扇形有性质:弧长比等于半径比、面积比等于半径比的平方….请你协助他们探索这个问题.
(1)写出判定扇形相似的一种方法:若
 
,则两个扇形相似;
(2)有两个圆心角相等的扇形,其中一个半径为a、弧长为m,另一个半径为2a,则它的弧长为
 

(3)如图1是一完全打开的纸扇,外侧两竹条AB和AC的夹角为120°,AB为30cm,现要做一个和它形状相同、面积是它一半的纸扇(如图2),求新做纸扇(扇形)的圆心精英家教网角和半径.

查看答案和解析>>

探究学习:探索勾股定理时,我们发现“用不同的方式表示同一图形的面积”可以解决线段和(或差)的有关问题,这种方法称为面积法.请你运用面积法求解下列问题:在等腰三角形ABC中,AB=AC,BD为腰AC上的高(如图1).
(1)若等腰△ABC的面积为24 cm2,腰的长为8 cm,则腰AC上的高BD的长为
 
cm;
(2)若BD=h,M是直线BC上的任意一点,M到AB、AC的距离分别为h1、h2
①若M在线段BC上,请你结合图2证明:h1+h2=h;
②当点M在BC延长线上时,h1、h2、h之间的关系为
 
.(直接写出结论,不必证明)
精英家教网

查看答案和解析>>

13、九(1)班合作学习小组为了了解我市餐饮业人员的收入情况,到某餐厅进行调查,他们将了解到的该餐厅所有10名员工月工资情况列表如下:

请你解答他们设计的下列问题(将答案直接填在横线上):
①该餐厅所有员工的平均工资是
870
元,所有员工工资的中位数是
600
元;
②该餐厅员工工资的众数是
500
元.

查看答案和解析>>


同步练习册答案