26. 解:(1)抛物线的顶点坐标为(5.5).与y轴交点坐标是(0.1) 设抛物线的解析式是y=a(x-5)2+5 把2+5得a=- ∴y=-(x-5)2+5 (2)由已知得两景观灯的纵坐标都是4 ∴4=-(x-5)2+5 ∴ (x-5)2=1 ∴x1= x2= ∴ 两景观灯间的距离为5米. 查看更多

 

题目列表(包括答案和解析)

抛物线y=ax2+bx+c与x轴交于A、B两点(点A在点B左侧),与y轴交于点C,且当x=0和x=2时,y的值相等.直线y=3x-7与这条抛物线相交于两点,其中一点的横坐标是4,另一点是这条抛物线的顶点M.
(1)求这条抛物线的解析式;
(2)P为线段BM上一点,过点P向x轴引垂线,垂足为Q.若点P在线段BM上运动(点P不与点B、M重合),设OQ的长为t,四边形PQOC的面积为S.求S与t之间的函数关系式及自变量t的取值范围.
(3)对于二次三项式x2-10x+36,小明同学作出如下结论:无论x取什么实数,它的值都不可能等于11.你是否同意他的说法?说明你的理由.

查看答案和解析>>

抛物线l1:y=-x2+2x与x轴的交点为O、A,顶点为D,抛物线l2与抛物线l1关于y轴对称,与x轴的交点为O、B,顶点为C,线段CD交y轴于点E.
(1)求抛物线l2的顶点C的坐标及抛物线l2的解析式;
(2)设P是抛物线l1上与D、O两点不重合的任意一点,Q点是P点关于y轴的对称点,试判断以P、Q、C、D为顶点的四边形是什么特殊的四边形(直接写出结论)?
(3)在抛物线l1上是否存在点M,使得S△ABM=S四边形AOED?如果存在,求出M的坐标,如果不存在,请说明理由.

查看答案和解析>>

如图,抛物线的顶点为H,与轴交于A、B两点(B点在A点右侧),点H、B关于直线:对称,过点B作直线BK∥AH交直线于K点.

(1)求A、B两点坐标,并证明点A在直线上;

(2)求此抛物线的解析式;

(3)将此抛物线向上平移,当抛物线经过K点时,

设顶点为N,求出NK的长.

查看答案和解析>>

如图,抛物线的顶点为H,与轴交于A、B两点(B点在A点右侧),点H、B关于直线:对称,过点B作直线BK∥AH交直线于K点.

(1)求A、B两点坐标,并证明点A在直线上;
(2)求此抛物线的解析式;
(3)将此抛物线向上平移,当抛物线经过K点时,设顶点为N,求出NK的长.

查看答案和解析>>

如图,抛物线的顶点为H,与轴交于A、B两点(B点在A点右侧),点H、B关于直线对称,过点B作直线BK∥AH交直线于K点.

(1)求A、B两点坐标,并证明点A在直线上;
(2)求此抛物线的解析式;
(3)将此抛物线向上平移,当抛物线经过K点时,设顶点为N,求出NK的长.

查看答案和解析>>


同步练习册答案