如图11所示,如果△ABC的∠B与∠C的平分线交于P点,∠BPC=134°,则∠BAC= . 查看更多

 

题目列表(包括答案和解析)

如图11所示,已知抛物线轴交于A、B两点,与轴交于点C.

【小题1】求A、B、C三点的坐标
【小题2】过点A作AP∥CB交抛物线于点P,求四边形ACBP的面积.
【小题3】在轴上方的抛物线上是否存在一点M,过M作MG轴于点G,使以A、M、G三点为顶点的三角形与PCA相似.若存在,请求出M点的坐标;否则,请说明理由.

查看答案和解析>>

如图4所示,△ABC的顶点是正方形网格的格点,则的值为【    】

A.     B.         C.       D.

 

查看答案和解析>>

如图11所示,已知抛物线轴交于A、B两点,与轴交于点C.

1.求A、B、C三点的坐标

2.过点A作AP∥CB交抛物线于点P,求四边形ACBP的面积.

3.在轴上方的抛物线上是否存在一点M,过M作MG轴于点G,使以A、M、G三点为顶点的三角形与PCA相似.若存在,请求出M点的坐标;否则,请说明理由.

 

查看答案和解析>>

如图11所示,已知抛物线轴交于A、B两点,与轴交于点C.

1.求A、B、C三点的坐标

2.过点A作AP∥CB交抛物线于点P,求四边形ACBP的面积.

3.在轴上方的抛物线上是否存在一点M,过M作MG轴于点G,使以A、M、G三点为顶点的三角形与PCA相似.若存在,请求出M点的坐标;否则,请说明理由.

 

查看答案和解析>>

阅读材料:如图1所示,△ABC的周长为l,面积为S,内切圆O的半径为r,探究r与S、l之间的关系,连接OA,OB,OC。
∵S=S△OAB+S△OBC+S△OCA
又∵


解决问题:
(1)利用探究的结论,计算边长分别为5,12,13的三角形内切圆半径;
(2)若四边形ABCD存在内切圆(与各边都相切的圆),如图2且面积为S,各边长分别为a,b,c,d,试推导四边形的内切圆半径公式;
(3)若一个n边形(n为不小于3的整数)存在内切圆,且面积为S,各边长分别为a1,a2,a3,…,an,合理猜想其内切圆半径公式(不需说明理由)。

图1                                                  图2

查看答案和解析>>


同步练习册答案