22、我们知道,两边及其中一边的对角分别对应相等的两个三角形不一定全等.那么在什么情况下,它们会全等?
(1)阅读与证明:
对于这两个三角形均为直角三角形,显然它们全等.
对于这两个三角形均为钝角三角形,可证它们全等(证明略).
对于这两个三角形均为锐角三角形,它们也全等,可证明如下:
已知:△ABC、△A
1B
1C
1均为锐角三角形,AB=A
1B
1,BC=B
1C
l,∠C=∠C
l.
求证:△ABC≌△A
1B
1C
1.
(请你将下列证明过程补充完整.)
证明:分别过点B,B
1作BD⊥CA于D,
B
1D
1⊥C
1A
1于D
1.
则∠BDC=∠B
1D
1C
1=90°,
∵BC=B
1C
1,∠C=∠C
1,
∴△BCD≌△B
1C
1D
1,
∴BD=B
1D
1.
(2)归纳与叙述:
由(1)可得到一个正确结论,请你写出这个结论.