为了培养学生的逻辑思维能力.自学能力和自己发现问题---提出问题----解决问题的学习方法,在教学上我采用“实验探究.以新带旧.精心设疑.变式训练 等方法,充分调动学生的积极性,使学生始终处于最佳的思维状态之中,激发学生的兴趣. 查看更多

 

题目列表(包括答案和解析)

某外语学校在圣诞节要举行汇报演出,需要准备一些圣诞帽,为了培养学生的动手能力,学校决定自己制作这些圣诞帽.如果圣诞帽(圆锥形状)的规格是母线长42厘米,底面直径为16厘米.
(1)求圣诞帽的侧面展开图(扇形)的圆心角的度数(精确到度);
(2)已知A种规格的纸片能做3个圣诞帽,B种规格的纸片能做4个圣诞帽,汇报演出需要26个圣诞帽,写出A种规格的纸片y张与B种规格的纸片x张之间的函数关系式及其x的最大值与最小值;若自己制作时,A、B两种规格的纸片各买多少张时,才不会浪费纸张?
(3)现有一张边长为79厘米的正方形纸片,它最多能制作几个这种规格的圣诞帽(圣诞帽的粘接处忽略不计).请在比例尺为1:15的正方形纸片上画出圣诞帽的侧面展开图的裁剪草图,并利用所学的数学知识说明其可行性.
精英家教网

查看答案和解析>>

为了培养学生的理财能力,初二(1)班创办了一个“小银行”.王华打算将一张存单上的钱全部取出,“银行出纳员”匆忙中把存单金额的整数部分(元数)与小数部分正好错位(即把小数部分当成整数部分,而把整数部分当成小数部分)付给了王华.王华没有清点即回家,回家途中他购物用了3.50元,购物后却惊奇地发现所剩的钱数是应取钱数的2倍.便立即与出纳员联系.问王华应取多少钱?

查看答案和解析>>

某外语学校在圣诞节要举行汇报演出,需要准备一些圣诞帽,为了培养学生的动手能力,学校决定自己制作这些圣诞帽.如果圣诞帽(圆锥形状)的规格是母线长42厘米,底面直径为16厘米.
(1)求圣诞帽的侧面展开图(扇形)的圆心角的度数(精确到度);
(2)已知A种规格的纸片能做3个圣诞帽,B种规格的纸片能做4个圣诞帽,汇报演出需要26个圣诞帽,写出A种规格的纸片y张与B种规格的纸片x张之间的函数关系式及其x的最大值与最小值;若自己制作时,A、B两种规格的纸片各买多少张时,才不会浪费纸张?
(3)现有一张边长为79厘米的正方形纸片,它最多能制作几个这种规格的圣诞帽(圣诞帽的粘接处忽略不计).请在比例尺为1:15的正方形纸片上画出圣诞帽的侧面展开图的裁剪草图,并利用所学的数学知识说明其可行性.

查看答案和解析>>

为了培养学生的理财能力,初二(1)班创办了一个“小银行”.王华打算将一张存单上的钱全部取出,“银行出纳员”匆忙中把存单金额的整数部分(元数)与小数部分正好错位(即把小数部分当成整数部分,而把整数部分当成小数部分)付给了王华.王华没有清点即回家,回家途中他购物用了3.50元,购物后却惊奇地发现所剩的钱数是应取钱数的2倍.便立即与出纳员联系.问王华应取多少钱?

查看答案和解析>>

某外语学校在圣诞节要举行汇报演出,需要准备一些圣诞帽,为了培养学生的动手能力,学校决定自己制作这些圣诞帽.如果圣诞帽(圆锥形状)的规格是母线长42厘米,底面直径为16厘米.
(1)求圣诞帽的侧面展开图(扇形)的圆心角的度数(精确到度);
(2)已知A种规格的纸片能做3个圣诞帽,B种规格的纸片能做4个圣诞帽,汇报演出需要26个圣诞帽,写出A种规格的纸片y张与B种规格的纸片x张之间的函数关系式及其x的最大值与最小值;若自己制作时,A、B两种规格的纸片各买多少张时,才不会浪费纸张?
(3)现有一张边长为79厘米的正方形纸片,它最多能制作几个这种规格的圣诞帽(圣诞帽的粘接处忽略不计).请在比例尺为1:15的正方形纸片上画出圣诞帽的侧面展开图的裁剪草图,并利用所学的数学知识说明其可行性.

查看答案和解析>>


同步练习册答案