5.已知函数:. 和. (1)分别画出它们的图象, (2)说出各个图象的开口方向.对称轴和顶点坐标, (3)说出函数的图象的开口方向.对称轴和顶点坐标, (4)试说明函数..的图象分别有抛物线作怎样的平移才能得到? 查看更多

 

题目列表(包括答案和解析)

已知函数y=-x2,y=-(x+1)2,y=-(x-1)2

(1)在同一直角坐标系中画出它们的图象;

(2)分别说出各个函数图象的开口方向、对称轴和顶点坐标;

(3)分别讨论各个函数的性质.

(4)试说明:分别通过怎样的平移,可以由抛物线y=-x得到抛物线y=-(x+1)2和y=-(x-1)2

查看答案和解析>>

探索一个问题:“任意给定一个矩形A,是否存在另一个矩形B,它的周长和面积分别是已知矩形周长和面积的一半?”
(1)完成下列空格:
当已知矩形A的边长分别为6和1时,小明是这样研究的:设所求矩形的一边是x,则另一边为(数学公式-x),由题意得方程:x(数学公式-x)=3,化简得:2x2-7x+6=0
∵b2-4ac=49-48>0,∴x1=______,x2=______.
∴满足要求的矩形B存在.
小红的做法是:设所求矩形的两边分别是x和y,由题意得方程组:数学公式消去y化简后也得到:2x2-7x+6=0,(以下同小明的做法)
(2)如果已知矩形A的边长分别为2和1,请你仿照小明或小红的方法研究是否存在满足要求的矩形B.
(3)在小红的做法中,我们可以把方程组整理为:数学公式,此时两个方程都可以看成是函数解析式,从而我们可以利用函数图象解决一些问题.如图,在同一平面直角坐标系中画出了一次函数和反比例函数的部分图象,其中x和y分别表示矩形B的两边长,请你结合刚才的研究,回答下列问题:(完成下列空格)
①这个图象所研究的矩形A的面积为______;周长为______.
②满足条件的矩形B的两边长为______和______.

查看答案和解析>>

探索一个问题:“任意给定一个矩形A,是否存在另一个矩形B,它的周长和面积分别是已知矩形周长和面积的一半?”
(1)完成下列空格:
当已知矩形A的边长分别为6和1时,小明是这样研究的:设所求矩形的一边是x,则另一边为(-x),由题意得方程:x(-x)=3,化简得:2x2-7x+6=0
∵b2-4ac=49-48>0,∴x1=______,x2=______.
∴满足要求的矩形B存在.
小红的做法是:设所求矩形的两边分别是x和y,由题意得方程组:消去y化简后也得到:2x2-7x+6=0,(以下同小明的做法)
(2)如果已知矩形A的边长分别为2和1,请你仿照小明或小红的方法研究是否存在满足要求的矩形B.
(3)在小红的做法中,我们可以把方程组整理为:,此时两个方程都可以看成是函数解析式,从而我们可以利用函数图象解决一些问题.如图,在同一平面直角坐标系中画出了一次函数和反比例函数的部分图象,其中x和y分别表示矩形B的两边长,请你结合刚才的研究,回答下列问题:(完成下列空格)
①这个图象所研究的矩形A的面积为______;周长为______.
②满足条件的矩形B的两边长为______

查看答案和解析>>

(2012•西城区模拟)探索一个问题:“任意给定一个矩形A,是否存在另一个矩形B,它的周长和面积分别是已知矩形周长和面积的一半?”
(1)完成下列空格:
当已知矩形A的边长分别为6和1时,小明是这样研究的:设所求矩形的一边是x,则另一边为(
7
2
-x),由题意得方程:x(
7
2
-x)=3,化简得:2x2-7x+6=0
∵b2-4ac=49-48>0,∴x1=
2
2
,x2=
3
2
3
2

∴满足要求的矩形B存在.
小红的做法是:设所求矩形的两边分别是x和y,由题意得方程组:
x+y=
7
2
xy=3
消去y化简后也得到:2x2-7x+6=0,(以下同小明的做法)
(2)如果已知矩形A的边长分别为2和1,请你仿照小明或小红的方法研究是否存在满足要求的矩形B.
(3)在小红的做法中,我们可以把方程组整理为:
y=
7
2
-x
y=
3
x
,此时两个方程都可以看成是函数解析式,从而我们可以利用函数图象解决一些问题.如图,在同一平面直角坐标系中画出了一次函数和反比例函数的部分图象,其中x和y分别表示矩形B的两边长,请你结合刚才的研究,回答下列问题:(完成下列空格)
①这个图象所研究的矩形A的面积为
8
8
;周长为
18
18

②满足条件的矩形B的两边长为
9+
17
4
9+
17
4
9-
17
4
9-
17
4

查看答案和解析>>

阅读下面的材料:

         在平面几何中,我们学过两条直线平行的定义.下面就两个一次函数的图象所确定的两条直线,给出它们平行的定义:设一次函数的图象为直线,一次函数的图象为直线,若,且,我们就称直线与直线互相平行.

解答下面的问题:

    (1)已知一次函数的图象为直线,求过点且与已知直线平行的直线的函数表达式,并在坐标系中画出直线的图象;

   (2)设直线分别与轴、轴交于点,过坐标原点O作OC⊥AB,垂足为C,求两平行线之间的距离OC的长。

(3)若Q为OA上一动点,求QP+QB的最小值,并求取得最小值时Q点的坐标。

(4)在轴上找一点M,使△BMP为等腰三角形,求M的坐标。(直接写出答案)

查看答案和解析>>


同步练习册答案