如图2所示,正方形AB-CD中,过点D作DP交AC于点M,交AB 于点N,交CB的延长线于点P,若MN=1,PN=3,则DM的长为 . 查看更多

 

题目列表(包括答案和解析)

25、某校在六年级和九年级男生中分别随机抽取20名男生测量他们的身高,绘制的频数分布直方图如图2所示,其中两条点划线上端的数值分别是每个年级被抽20名男生身高的平均数,试根据该图提供的信息填空:
(1)六年级被抽取的20名男生身高的中位数所在组的范围是
148~153
厘米;九年级被抽取的20名男生身高的中位数所在组的范围是
168~173
厘米.
(2)估计这所学校九年级男生的平均身高比六年级男生的平均身高高
18.6
厘米.
(3)估计这所学校六、九两个年级全体男生中,身高不低于153厘米且低于163厘米的男生所占的百分比是
22.5%

查看答案和解析>>

如图1是甲、乙两个圆柱形水槽的轴截面示意图,乙槽中有一圆柱形铁块立放其中(圆柱形铁块的下底面完全落在乙槽底面上),现将甲槽中的水匀速注入乙槽.甲、乙两个水槽中水的深度y(cm)与注水时间x(分)之间的关系如图2所示.根据图象解答下列问题:

(1)图2中折线ABC表示
槽中水的深度与注水时间之间的关系.线段DE表示
槽中水的深度与注水时间之间的关系.点B的纵坐标的实际意义是
乙槽中圆柱形铁块的实际高度14厘米
乙槽中圆柱形铁块的实际高度14厘米

(2)注水多长时间,甲、乙两个水槽中水的深度相同.
(3)若乙槽底面积为36cm2,(壁厚不计),求乙槽中铁块的体积.
(4)若乙槽中铁块的体积为112cm3,则甲槽的底面积是
60
60
cm2

查看答案和解析>>

某工厂用如图1所示的长方形和正方形纸板,做成如图2所示的A种与B种两种长方体形状的无盖纸盒.现有正方形和长方形纸板共502张,其中正方形纸版比长方形纸板少138张.
(1)求长方形纸板和正方形纸板的张数;
(2)若要生产两种纸盒共100个,按两种纸盒的生产个数分,有哪几种生产方案?
精英家教网

查看答案和解析>>

8、黑色正三角形与白色正六边形的边长相等,用它们镶嵌图案,方法如下:白色正六边形分上下两行,上面一行的正六边形个数比下面一行少一个,正六边形之间的空隙用黑色的正三角形嵌满.按第1,2,3个图案(如图)所示规律依次下去,则第n个图案中,黑色正三角形和白色正六边形的个数分别是(  )

查看答案和解析>>

(2012•赤峰)阅读材料:
(1)对于任意两个数a、b的大小比较,有下面的方法:
当a-b>0时,一定有a>b;
当a-b=0时,一定有a=b;
当a-b<0时,一定有a<b.
反过来也成立.因此,我们把这种比较两个数大小的方法叫做“求差法”.
(2)对于比较两个正数a、b的大小时,我们还可以用它们的平方进行比较:
∵a2-b2=(a+b)(a-b),a+b>0
∴(a2-b2)与(a-b)的符号相同
当a2-b2>0时,a-b>0,得a>b
当a2-b2=0时,a-b=0,得a=b
当a2-b2<0时,a-b<0,得a<b
解决下列实际问题:
(1)课堂上,老师让同学们制作几种几何体,张丽同学用了3张A4纸,7张B5纸;李明同学用了2张A4纸,8张B5纸.设每张A4纸的面积为x,每张B5纸的面积为y,且x>y,张丽同学的用纸总面积为W1,李明同学的用纸总面积为W2.回答下列问题:
①W1=
3x+7y
3x+7y
(用x、y的式子表示)
W2=
2x+8y
2x+8y
(用x、y的式子表示)
②请你分析谁用的纸面积最大.
(2)如图1所示,要在燃气管道l上修建一个泵站,分别向A、B两镇供气,已知A、B到l的距离分别是3km、4km(即AC=3km,BE=4km),AB=xkm,现设计两种方案:

方案一:如图2所示,AP⊥l于点P,泵站修建在点P处,该方案中管道长度a1=AB+AP.
方案二:如图3所示,点A′与点A关于l对称,A′B与l相交于点P,泵站修建在点P处,该方案中管道长度a2=AP+BP.
①在方案一中,a1=
(3+x)
(3+x)
km(用含x的式子表示);
②在方案二中,a2=
x2+48
x2+48
km(用含x的式子表示);
③请你分析要使铺设的输气管道较短,应选择方案一还是方案二.

查看答案和解析>>


同步练习册答案